DOI QR코드

DOI QR Code

Sediment Particulate Motions Over a Ripple Under Different Wave Amplitude Conditions

파랑에 의한 해저 사련 위에서의 유사입자의 거동 특성

  • Chang, Yeon S. (Miami Dade College, Ocean Circulation and Climate Change Research Department, Korean Institute of Ocean Science and Technology) ;
  • Ahn, Kyungmo (School of Spatial Environment System Engineering, Handong Global University) ;
  • Hwang, Jin H. (Department of Civil & Environmental Engineering, Seoul National University) ;
  • Park, Young-Gyu (Ocean Circulation and Climate Change Research Department, Korean Institute of Ocean Science and Technology)
  • 장연식 (미국 마이애미 데이드 컬리지, 한국해양과학기술원 해양순환 기후연구부) ;
  • 안경모 (한동대학, 공간환경시스템공학부) ;
  • 황진환 (서울대학교, 건설환경공학부) ;
  • 박영규 (한국해양과학기술원 해양순환 기후연구부)
  • Received : 2013.11.26
  • Accepted : 2013.12.23
  • Published : 2013.12.31

Abstract

Sediment particle motions have been numerically simulated over a sinusoidal ripple. Turbulent boundary layer flows are generated by Large Eddy Simulation, and the sediment particle motions are simulated using Lagrangian particle tracking method. Two unsteady flow conditions are used in the experiment by employing two different wave amplitudes while keeping other conditions such as wave period same. As expected, the amount of suspended sediment particles is clearly dependent on the wave amplitude as it is increasing with increasing flow intensity. However, it is also observed that the pattern of suspension may be different as well due to the only different condition caused by wave amplitude. Specially, the time of maximum sediment suspension within the wave period is not coincident between the two cases because sediment suspension is strongly affected by the existence of turbulent eddies that are formed at different times over the ripple between the two cases as well. The role of these turbulent eddies on sediment suspension is important as it is also confirmed in previous researches. However, it is also found the time of these eddies' formation may also dependent on the wave amplitude over rippled beds. Therefore, it has been proved that various flow as well as geometric conditions under waves has to be considered in order to have better understanding on the sediment suspension process over ripples. In addition, it is found that high turbulent energy and strong upward flow velocities occur during the time of eddy formation, which also supports high suspension rate at these time steps. The results indicate that the relationship between the structure of flows and bedforms has to be carefully examined in studying sediment suspension at coastal regions.

부유 퇴적물의 입자 운동에 대한 수치실험이 굴곡이 있는 해저면 위에서 수행되었다. 해저면 경계층의 난류 유속장은 LES 난류모델을 사용하여 구현하였고, 난류 흐름 속에서의 퇴적물 입자운동은 Lagrangian 입자추적 모델을 사용하여 구현하였다. 수치실험을 통하여 두개의 다른 유속조건을 사용하였는데, 파랑주기를 비롯한 다른 모든 조건은 동일하게 유지한 가운데 오직 최대 유속만 다르게 하여 실험을 수행하였다. 예상한 것과 같이 부유되는 퇴적물 입자의 양은 유속이 강할 수록 증가하였다. 그러나 예상하지 못한 결과도 관측되었는데 그것은 비록 최대유속외에 다른 모든 조건은 동일하더라도 퇴적물이 부유되는 양상은 다르게 나타날 수 있다는 것이다. 특히 퇴적물이 부유하게 되는 시간이 위상평균한 파장 주기안에서 서로 다르게 나타나는 것이 발견되었는데, 이는 해저면 굴곡 주위에서 유속에 의해 생성되는 난류 와동의 생성시간이 다르기 때문에 일어나는 것으로 밝혀졌다. 이전의 연구에서도 알려진 바와 같이 이런 난류 와동들이 퇴적물의 부유현상에 미치는 영향은 지대한 것으로 확인되었으며, 또한 이런 와동들의 생성시간은 유속의 크기에 따라 달라 질 수 있음이 밝혀졌다. 이로인해 해저면 굴곡 위에서 퇴적물의 부유현상을 보다 정확하게 규명하기 위해서는 파랑의 여러가지 복잡한 변수들을 고려하여야 함이 이번 실험을 통하여 입증되었다. 또한 퇴적물 입자의 부유에 영향을 미치는 난류 에너지분포 역시 생성된 난류 와동에 많은 영향을 받는 것으로 나타났다. 이번 연구를 통하여 유속의 세기변화 만으로도 퇴적물이 부유되는 시간이 굴곡이 있는 해저면에서 바뀔 수 있는 것으로 확인되었으며, 이는 향후 퇴적물 부유에 대한 연구를 할때 해저면 구조와 유속구조의 상관관계를 보다 신중히 검토해야 함이 밝혀졌다.

Keywords

References

  1. Andersen, K.H. (1999). The dynamics of ripples beneath surface waves and topics in shell models of turbulence, PhD dissertation, Technical Univ. of Denmark.
  2. Bagnold, R.A. (1946). Motions of waves in shallow water. Interaction between waves and sand bottoms. With an additional note by Sir G.I. Taylor. Proc. R. Soc. London, Ser. A 187.
  3. Bagnold, R.A. (1966). An approach to the sediment transport problem for general physics. Technical Report 422-I, Geological Survey Professional paper, Washington D.C., 1966.
  4. Barr, B.C., Slinn, D.N., Pierro, T. and Winters, K. B. (2004). Numerical simulation of turbulent, oscillatory flow over sand ripples. J. Geophys. Res., 109(C09009).
  5. Blondeaux, P. and Vittori, G. (1991). Vorticity dynamics in an oscillatory flow over a rippled bed. J. Fluid Mech., 226, 257-289. https://doi.org/10.1017/S0022112091002380
  6. Celik, I. and Rodi, W. (1991). Suspended sediment transport capacity for open channel flow. J. Hydraul. Eng., 117, 191-204. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:2(191)
  7. Chang, Y.S. and Hanes, D.M. (2004). Suspended sediment and hydrodynamics above mildly sloped large wave ripples. J. Geophys. Res., 109(C7).
  8. Chang, Y.S. and Scotti, A. (2004). Modeling unsteady turbulent flows over ripples: Raynolds-averaged navier-stokes equations (rans) versus large-eddy simulation (les). J. Geophys. Res., 109(C9).
  9. Chang, Y.S. and Scotti, A. (2003). Entrainment and suspension of sediments into a turbulent flow over ripples. J. of Turbulence, 4(No019).
  10. Chang, Y.S. and Scotti, A. (2006). Turbulent convection of suspended sediments due to flow reversal. J. Geophys. Res., 111(C07001).
  11. Chang, Y.S., Hwang, J.H. and Park, Y.G. (2013a). Numerical simulation of sediment particles released at the edge of the viscous sublayer in steady and oscillating turbulent boundary layers. Accepted by Journal of Hydro-Environmental Research.
  12. Chang, Y.S., Park, Y.G. and Hwang, J.H. (2013b). Suspension of sediment particles over a ripple in an unsteady flow. Submitted to Journal of Hydro-Environmental Research.
  13. Chang, Y.S., Park, Y.G. and Hwang, J.H. (2013c). Sensitivity of sediment suspension to the flow unsteadiness over a rippled bed. Submitted to Journal of Hydro-Environmental Research.
  14. Fadlun, E.A., Verzicco, R., Olrandi, P. and Mohd-Yusof, J. (2000). Combined immersed boundary finite difference methods for three-dimensional complex flow simulations J. Comput. Phys., 161, 35-60. https://doi.org/10.1006/jcph.2000.6484
  15. Fredsoe, J. and Deigaard, R. (1992). Mechanics of coastal sediment transport, volume 3. World Scientific Singapore.
  16. Hansen, E.A., Fredsoe, J. and Deigaard, R. (1994). Distribution of suspended sediment over wave-generated ripples. J. Wat. Port Coast. Ocean Engrg., 120(1), 37-55. https://doi.org/10.1061/(ASCE)0733-950X(1994)120:1(37)
  17. Hunt, J.C.R., Wray, A.A. and Moin, P. (1988). Eddies, streams and convergence zones in turbulent flows. In CTR Annual Research Briefs. pp193. NASA Ames/Stanford University.
  18. Maxey, M.R. and Riley, J. (1983). Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids, 26(4), 883-889. https://doi.org/10.1063/1.864230
  19. Meneveau, C., Lund, T.S. and Cabot, W.H. (1996). A lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech., 319, 353-385. https://doi.org/10.1017/S0022112096007379
  20. Nielsen, P. (1979). Some basic concepts of wave sediment transport. Technical report series paper 20, Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark.
  21. Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport, volume 4. World Scientific, River Egde, NJ.
  22. Rousseaux, G., Yoshikawa, H., Stegner, A. and Wesfreid, J.E. (2004). Dynamics of transient eddy above rolling-grain ripples. Phys. Fluid., 16(4).
  23. Scherer, M.A., Melo, F. and Marder, M. (1999). Sand ripples in an oscillating annualar sand-water cell. Phys. Fluids, 11(1).
  24. Sleath, J.F.A. (1984). Sea bed mechanics. Wiley, New York.
  25. Tjerry, S. (1995). Morphological calculations of dunes in alluvial rivers. Ph.D thesis, ISVA, the Danish Technical University.
  26. Vittori, G. (2003). Sediment suspension due to waves. J. Geophys. Res., 108(C6):3173. doi:10.1029/2002JC001378.
  27. Wiberg, P.L. and Smith, J.D. (1985). A theoretical model for saltating grains in water. J. Geophys. Res., 90(C4), 7341-7354. https://doi.org/10.1029/JC090iC04p07341
  28. Zedler, A. and Street, R.L. (2001). Large-Eddy simulation of sediment transport: current over ripples. J. Hydraul. Eng. 127(6).

Cited by

  1. Suspension of sediment particles over a ripple due to turbulent convection under unsteady flow conditions vol.51, pp.1, 2016, https://doi.org/10.1007/s12601-016-0011-2
  2. Sensitivity of suspension pattern of numerically simulated sediments to oscillating periods of channel flows over a rippled bed vol.21, pp.5, 2017, https://doi.org/10.1007/s12205-016-0516-3