DOI QR코드

DOI QR Code

너울성파랑 정의를 위한 파랑스펙트럼의 형상모수 특성 분석

Analysis of the Wave Spectral Shape Parameters for the Definition of Swell Waves

  • 안경모 (한동대학교 공간환경시스템 공학부) ;
  • 천후섭 ((주)지오시스템리서치 연안관리부) ;
  • 정원무 (한국해양과학기술원 연안개발.에너지 연구부) ;
  • 박등대 ((주)지오시스템리서치 연안관리부) ;
  • 강태순 ((주)지오시스템리서치 연안관리부) ;
  • 홍성진 (국립재난안전연구원 방재연구실)
  • Ahn, Kyungmo (School of Spatial and Environmental Engineering, Handong Global University) ;
  • Chun, Hwusub (Department of Coastal Management, Geosystem Research Corporation) ;
  • Jeong, Weon Mu (Coastal Development and Ocean Energy Research Division, Korea Institute of Ocean Science and Technology) ;
  • Park, Deungdae (Department of Coastal Management, Geosystem Research Corporation) ;
  • Kang, Tae-Soon (Department of Coastal Management, Geosystem Research Corporation) ;
  • Hong, Sung-Jin (Disaster Prevention Research Division, National Disaster Management Institute)
  • 투고 : 2013.12.02
  • 심사 : 2013.12.24
  • 발행 : 2013.12.31

초록

본 연구에서는 너울성파랑을 정의하기 위한 첫 단계로 확률모의실험을 통해 파랑스펙트럼 첨두모수 $Q_p$, 주파수폭대역 모수 ${\varepsilon}$, 파랑스펙트럼 폭 모수 ${\nu}$의 특성들을 분석하였다. 이를 위해 유의파고 및 첨두주기의 결합확률 밀도함수를 새롭게 유도한 후, MCMC(Markov Chain Monte Carlo)기법을 이 함수에 적용하여 가상의 유의파고 및 첨두주기를 생성하였다. 그리고, 이 때 생성된 파랑자료들을 파랑스펙트럼모형에 적용하여 각각에 대한 파랑스펙트럼 형상모수들을 산정한 다음, 각각의 파랑자료들과 파랑스펙트럼 형상모수들의 상관관계 계수를 산정하는 방법으로 각 파랑스펙트럼 형상모수의 특성들을 조사하였다. 본 연구의 결과에 의하면, 파랑스펙트럼 형상모수 중 파랑스펙트럼 첨두모수가 유의파고 및 첨두주기에 관계없이 파랑스펙트럼의 뾰족한 정도를 잘 나타내고 있었는데, 이러한 특성은 후포 및 울릉도 파랑관측자료에서도 동일하게 나타나고 있는 것으로 확인되었다. 너울성파랑 정의를 위한 대표적인 파랑스펙트럼 형상모수로 파랑스펙트럼 첨두모수를 사용하는 것이 가장 적절한 것으로 보인다.

In the present study, the characteristics of spectral peakedness parameter $Q_p$, bandwidth parameter ${\varepsilon}$, and spectral width parameter ${\nu}$ were analyzed as a first step to define the swell waves quantitatively. For the analysis, the joint probability density function of significant wave heights and peak periods were newly developed. The MCMC(Markov Chain Monte Carlo) simulations have been performed to generate the significant wave heights and peak periods from the developed probability density functions. Applying the simulated significant wave heights and peak periods to the theoretical wave spectrum models, the spectral shapes parameters were obtained and analyzed. Among the spectral shape parameters, only the spectral peakedness parameter $Q_p$, is shown to be independent with the significant wave height and peak wave period. It also best represents the peakedness of the spectral shape, and henceforth $Q_p$ should be used to define the swell waves with a wave period. For the field verification of the results, wave data obtained from Hupo port and Ulleungdo were analyzed and results showed the same trend with the MCMC simulation results.

키워드

참고문헌

  1. Cartwright, D.E. and Longuet-Higgins, M.S. (1956). The statistical distribution of the maxima of a random function. Proc. Royal Soc. London, Ser. A. 237, 212-232.
  2. Chib, S. (2004). Markov Chain Monte Carlo technology, In Handbook of Computational Statistics, eds by J.E. Gentle, W. Haerdle, and Y. Mori, Springer-Verlag.
  3. Chun, J., Ahn, K., and Yoon, J.-T. (2007). Wave simulation on Youngil bay by WAM extended to shallow water, Journal of Korean Society of Coastal and Ocean Engineers 19(6), 511-520.(in Korean)
  4. Goda, Y. (1970). Numerical experiments on wave statistics with spectral simulation. Report Port Harbour Res. Inst. 9(3), 3-57.
  5. Goda, Y. (2000). Random seas and design of maritime structures. World Scientific Pub. Co. Ltd.
  6. Handong Global University Institute of Construction and Envrionmental Research (2000). A study on the causes of beach erosion of Songdo beach and the establishment of countermeasure against it, Pohang. (한동대학교 건설환경연구소 (2000). 송도백사장 유실 원인규명 및 대책수립 연구, 포항시.)
  7. Longuet-Higgins, M.S. (1983). On the joint distribution of wave periods and amplitudes in a random wave fields. Proc. Royal Soc. Londong, Ser. A. 398, 241-258.
  8. Marthiesen, J. and Bitner-Gregeresen, E. (1990). Joint distribution for significant wave height and zero-crossing period. Applied Ocean Research 12(2), 93-103. https://doi.org/10.1016/S0141-1187(05)80033-1
  9. Ochi, M.K., Passailiao, E.L., and Malakar, S.B. (1996). Joint probability distribution of significant wave height and averaged period. University of Florida, Report UFL/COEL/TR-110.
  10. Ochi, M.K. (1998). Ocean waves : the stochastic approach, Cambridge University Press.
  11. Oh, S.-H., Jeong, W.-M., Lee, D.Y., and Kim, S.I. (2010). Analysis of th reason for occurrence of large-height swell-like waves in the east coast of Korea. Journal of Korean Society of Coastal and Ocean Engineers 22(2), 101-111.(in Korean)
  12. Rye, H. (1977). The stability of some currently used wave parameters, Coastal Engineering 1, 17-30. https://doi.org/10.1016/0378-3839(77)90004-7
  13. Sorensen, R.M. (1993). Basic wave mechanics: for coastal and ocean engineers, Wiley-Intersciences.
  14. Utsunomiya, Y., Okada, H., Eguchi, I., Takayama, T., and Nihei, F. (2009). A study on the prediction and monitoring system of swell waves, Coastal Research Center, No.9, 81-84. (宇都宮好博, 岡田弘三, 江口一平, 高山知司, 二章, (2009). (うねり性波浪) 豫測.監視システムの討, 沿岸技術究センタ論文集 No.9, 81-84.)
  15. Yoon, J.-T., Park, S.M., Ahn, K., and Chun, J. (2012). Probability density function of the residual tide level using Box-Cox transformation, 2012 conference of KAOSTS. (in Korean)
  16. Wilson, B.W. (1965). Numerical prediction of ocean waves in the North Atlantic for December 1959, Dtsch. Hydrogr. Z. 18, 114-130. https://doi.org/10.1007/BF02333333

피인용 문헌

  1. Long-term Wave Monitoring and Analysis Off the Coast of Sokcho vol.27, pp.4, 2015, https://doi.org/10.9765/KSCOE.2015.27.4.274
  2. Analysis of the Long-term Wave Characteristics off the Coast of Daejin vol.27, pp.2, 2015, https://doi.org/10.9765/KSCOE.2015.27.2.142
  3. A Study on the Statistical Characteristics and Numerical Hindcasts of Storm Waves in East Sea vol.26, pp.2, 2014, https://doi.org/10.9765/KSCOE.2014.26.2.81
  4. Runup Characteristics with the Variations of Wave Spectral Shape vol.26, pp.6, 2014, https://doi.org/10.9765/KSCOE.2014.26.6.381