DOI QR코드

DOI QR Code

PD-1 Expression in LPS-Induced Raw264.7 Cells Is Regulated via Co-activation of Transcription Factor NF-κB and IRF-1

Lipopolysaccharide 유도된 Raw264.7 세포주에서 전사조절인자 NF-κB와 IRF-1의 공동작용에 의해 조절되는 PD-1 발현연구

  • Choi, Eun-Kyoung (Department of Microbiology, Advanced Research Center for Multiple Myeloma, College of Medicine, Inje University) ;
  • Lee, Soo-Woon (Department of Oral and Maxillofacial Surgery, Haeundae Paik Hospital, Inje University) ;
  • Lee, Soo-Woong (Department of Microbiology, Advanced Research Center for Multiple Myeloma, College of Medicine, Inje University)
  • 최은경 (인제대학교 의과대학 미생물학교실, 다발성골수종전문연구센터) ;
  • 이수운 (인제대학교 해운대백병원 구강악안면외과) ;
  • 이수웅 (인제대학교 의과대학 미생물학교실, 다발성골수종전문연구센터)
  • Received : 2013.11.28
  • Accepted : 2013.12.23
  • Published : 2013.12.31

Abstract

Programmed Death-1 (PD-1) is one of the important immune-inhibitory molecules which was expressed in T cells, B cells, NKT cells, and macrophages activated by various immune activating factors. Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is one of the crucial immunogens for PD-1 expression. However, there are only a few reports on the expression mechanisms of PD-1 in innate immune cells. In this study, we investigate the expression mechanisms of PD-1 in LPS-stimulated Raw264.7 cell lines by RT-PCR, Western Blot, flow cytometry as well as ChIP assay and co-immunoprecipitation. When Raw264.7 cells were stimulated with LPS, PD-1 expression was greatly up-regulated via PI3K and p38 signaling. Primary macrophages isolated from LPS-injected mice were also shown the increased expression of PD-1. In promoter assay, NF-${\kappa}B$ and IRF-1 binding regions in mouse PD-1 promoter are important for PD-1 expression. We also found that the co-activation of NF-${\kappa}B$ and IRF-1 is indispensable for the maximum PD-1 expression. These results indicate that the modulation of PD-1 expressed in innate immune cells could be a crucial for the disease therapy such as LPS-induced mouse sepsis model.

Programmed Death-1 (PD-1)은 중요한 면역조절분자들 중 하나로 다양한 면역활성인자에 자극된 T 세포, B 세포, NKT 세포 및 대식세포에서 발현된다. Lipopolysaccaride (LPS)는 그람음성세균의 세포벽구성물질로 PD-1 발현을 유도하는 중요 면역원들 중 하나로 알려져 있다. 그러나 선천면역세포에서 PD-1 발현기전에 관한 연구는 미비한 실정이다. 본 연구에서는 LPS에 의해 자극된 Raw264.7 세포주를 대상으로 PD-1 발현 및 발현조전기전을 RT-PCR, Western Blot, 유세포분석기, ChIP assay 및 co-immunoprecipitation 방법으로 조사하였다. Raw264.7 세포주가 LPS로 자극되었을 때 PI3K 및 p38 신호전달경로를 경유하여 PD-1 발현이 크게 증가되었다. 또한 LPS 주사된 생쥐의 비장유래 대식세포에서도 PD-1 발현이 증가됨을 확인 하였다. PD-1 유전자의 프로모터 분석을 통해서 NF-${\kappa}B$ 및 IRF-1 결합부위가 PD-1 발현에 중요함을 알 수 있었다. 또한 PD-1 발현을 극대화하기 위하여 전사조절인자 NF-${\kappa}B$ 및 IRF-1의 공동활성이 필수적임을 확인하였다. 본 연구결과는 LPS 유도 생쥐패혈증모델에서 선천면역세포에 발현된 PD-1분자의 제어를 통한 질병 연구에 유용한 자료로 이용될 수 있을 것으로 사료된다.

Keywords

References

  1. Agata, Y., Kawasaki, A., Nishimura, H., Ishida, Y., Tsubata, T., Yagita, H., and Honjo, T. 1996. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8, 765-772. https://doi.org/10.1093/intimm/8.5.765
  2. Angus, D.C., Linde-Zwirble, W.T., Lidicker, J., Clermont, G., Carcillo, J., and Pinsky, M.R. 2001. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit. Care. Med. 29, 1303-1310. https://doi.org/10.1097/00003246-200107000-00002
  3. Annane, D., Bellissant, E., and Cavailon, J.M. 2005. Septic shock. Lancet 365, 63-78. https://doi.org/10.1016/S0140-6736(04)17667-8
  4. Azuma, M., Ito, D., Yagita, H., Okumura, K., Phillips, J.H., Lanier, L.L., and Somoza, C. 1993. B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366, 76-79. https://doi.org/10.1038/366076a0
  5. Blanco, J.C., Contursi, C., Salkowski, C.A., DeWitt, D.L., Ozato, K., and Vogel, S.N. 2000. Interferon regulatory factor (IRF)-1 and IRF-2 regulate interferon gamma-dependent cyclooxygenase 2 expression. J. Exp. Med. 191, 2131-2144. https://doi.org/10.1084/jem.191.12.2131
  6. Carter, L., Fouser, L.A., Jussif, J., Fitz, L., Deng, B., Wood, C.R., Collins, M., Honjo, T., Freeman, G.J., and Carreno, B.M. 2002. PD-1: PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur. J. Immunol. 32, 634-643. https://doi.org/10.1002/1521-4141(200203)32:3<634::AID-IMMU634>3.0.CO;2-9
  7. Cho, H.Y., Lee, S.W., Seo, S.K., Choi, I.W., Choi, I.h., and Lee, S.W. 2008. Interferon-sensitive response element (ISRE) is mainly responsible for IFN-$alpha$-induced upregulation of programmed death-1 (PD-1) in macrophages. Biochimi. Biophys. Acta 1779, 811-819. https://doi.org/10.1016/j.bbagrm.2008.08.003
  8. Cohen, J. 2002. The immunopathogenesis of sepsis. Nature 420, 885-891. https://doi.org/10.1038/nature01326
  9. Freeman, G.J., Freedman, A.S., Segil, J.M., Lee, G., Whitman, J.F., and Nadler, L.M. 1989. B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells. J. Immunol. 143, 2714-2722.
  10. Freeman, G.J., Long, A.J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., Fitz, L.J., Malenkovich, N., Okazaki, T., Byrne, M.C., and et al. 2000. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027-1034. https://doi.org/10.1084/jem.192.7.1027
  11. Hsu, H.Y. and Wen, M.H. 2002. Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J. Biol. Chem. 277, 22131-22139. https://doi.org/10.1074/jbc.M111883200
  12. Huang, X., Venet, F., Wang, Y.L., Lepape, A., Yuan, Z., Chen, Y., Swan, R., Kherouf, H., Monneret, G., Chung, C.S., and et al. 2009. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc. Natl. Acad. Sci. USA 14, 6303-6308.
  13. Ishida, Y., Agata, Y., Shibahara, K., and Honjo, T. 1992. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887-3895.
  14. Jiang, Z., Georgel, P., Du, X., Shamel, L., Sovath, S., Mudd, S., Huber, M., Kalis, C., Keck, S., Galanos, C., and et al. 2005. CD14 is required for MyD88-independent LPS signaling. Nature Immunol. 6, 565-570. https://doi.org/10.1038/ni1207
  15. Judith, M.C., Linda, B., Thomas, J.G., William, C.C., and Gerard, M.D. 2005. Interferon regulatory factor 1 (IRF-1) and IRF-2 expression in breast cancer tissue microarrays. J. Interferon Cytokine Res. 25, 587-594. https://doi.org/10.1089/jir.2005.25.587
  16. Keir, M.E., Francisco, L.M., and Sharpe, A.H. 2007. PD-1 and its ligands in T-cell immunity. Curr. Opin. Immunol. 19, 309-314. https://doi.org/10.1016/j.coi.2007.04.012
  17. Kim, Y.H., Choi, M.R., Song, D.K., Huh, S.O., Jang, C.G., and Suh, H.W. 2000. Regulation of c-fos gene expression by lipopolysaccharide and cycloheximide in C6 rat glioma cells. Brain Res. 872, 227-230. https://doi.org/10.1016/S0006-8993(00)02477-X
  18. Kou, X., Qi, S., Dai, W., Luo, L., and Yin, Z. 2011. Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway. Int. Immunopharmacol. 11, 1095-1102. https://doi.org/10.1016/j.intimp.2011.03.005
  19. Latchman, Y., Wood, C.R., Chernova, T., Chaudhary, D., Borde, M., Chernova, I., Iwai, Y., Long, A.J., Brown, J.A., Nunes, R., and et al. 2001. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261-268. https://doi.org/10.1038/85330
  20. Lawrence, T., Gilroy, D.W., Colville-Nash, P.R., and Willoughby, D.A. 2001. Possible new role for NF-kappaB in the resolution of inflammation. Nat. Med. 7, 1291-1297. https://doi.org/10.1038/nm1201-1291
  21. Martin, G.S., Mannino, D.M., Eaton, S., and Moss, M. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546-1554. https://doi.org/10.1056/NEJMoa022139
  22. Mueller, D.L., Jenkins, M.K., and Schwartz, R.H. 1989. Clonal expansion versus functional clonal inactivation: a costimulatory signaling pathway determines the outcome of T cell antigen receptor occupancy. Annu. Rev. Immunol. 7, 445-480. https://doi.org/10.1146/annurev.iy.07.040189.002305
  23. Nishimura, H., Minato, N., Nakano, T., and Honjo, T. 1998. Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int. Immunol. 10, 1563-1572. https://doi.org/10.1093/intimm/10.10.1563
  24. Okazaki, T., Maeda, A., Nishimura, H., Kurosaki, T., and Honjo, T. 2001. PD-1 immunoreceptor inhibits B cell receptormediated signaling by recruiting src homology 2-domaincontaining tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl. Acad. Sci. USA 98, 13866-13871. https://doi.org/10.1073/pnas.231486598
  25. Parant, M., Parant, F., and Chedid, L. 1977. Inheritance of lipopolysaccharide-enhanced nonspecific resistance to infection and of susceptibility to endotoxic shock in lipopolysaccharide low-responder mice. Infect. Immun. 16, 432-438.
  26. Parry, R.V., Chemnitz, J.M., Frauwirth, K.A., Lanfranco, A.R., Braunstein, I., Kobayashi, S.V., Linsley, P.S., Thompson, C.B., and Riley, J.L. 2005. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell Biol. 25, 9543-9553. https://doi.org/10.1128/MCB.25.21.9543-9553.2005
  27. Salkowski, C.A., Kopydlowski, K., Blanco, J., Cody, M.J., McNally, R., and Vogel, S.N. 1999. IL-12 is dysregulated in macrophages from IRF-1 and IRF-2 knockout mice. J. Immunol. 163, 1529-1536.
  28. Singh, A.K., Stock, P., and Akbari, O. 2011. Role of PD-L1 and PD-L2 in allergic diseases and asthma. Allergy 66, 155-162. https://doi.org/10.1111/j.1398-9995.2010.02458.x
  29. Yao, S., Wang, S., Zhu, Y., Luo, L., Zhu, G., Flies, S., Xu, H., Ruff, W., Broadwater, M., Choi, I.H., and et al. 2009. PD-1 on dendritic cells impedes innate immunity against bacterial infection. Blood 113, 5811-5818. https://doi.org/10.1182/blood-2009-02-203141
  30. Zhang, X., Schwartz, J.C., Guo, X., Bhatia, S., Cao, E., Lorenz, M., Cammer, M., Chen, L., Zhang, Z.Y., Edidin, M.A., and et al. 2004. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 20, 337-347. https://doi.org/10.1016/S1074-7613(04)00051-2