DOI QR코드

DOI QR Code

Comparison of Biofilm Formed on Stainless Steel and Copper Pipe Through the Each Process of Water Treatment Plant

정수처리 공정 단계별 스테인리스관과 동관에 형성된 생물막 비교

  • Kim, Geun-Su (Safety Center, Pulmuone Holdings Co., Ltd.) ;
  • Min, Byung-Dae (Water Supply and Sewerage Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research, Environmental Research Complex) ;
  • Park, Su-Jeong (Water Supply and Sewerage Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research, Environmental Research Complex) ;
  • Oh, Jung-Hwan (Environmental Analysis & Research team, The Environment Technology Institute, WoongjinCoway CO., Ltd.) ;
  • Cho, Ik-Hwan (Waterworks Head quarters) ;
  • Jang, Seok-Jea (Water Supply and Sewerage Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research, Environmental Research Complex) ;
  • Kim, Ji-Hae (Water Supply and Sewerage Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research, Environmental Research Complex) ;
  • Park, Sang-Min (Water Supply and Sewerage Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research, Environmental Research Complex) ;
  • Park, Ju-Hyun (Water Supply and Sewerage Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research, Environmental Research Complex) ;
  • Chung, Hyen-Mi (Water Supply and Sewerage Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research, Environmental Research Complex) ;
  • Ahn, Tae-Young (Department of Microbiology, Dankook University) ;
  • Jheong, Weonhwa (Water Supply and Sewerage Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research, Environmental Research Complex)
  • 김근수 (풀무원) ;
  • 민병대 (국립환경과학원 상하수도연구과) ;
  • 박수정 (국립환경과학원 상하수도연구과) ;
  • 오정환 (웅진코웨이) ;
  • 조익환 (인천시 상수도사업본부) ;
  • 장석재 (국립환경과학원 상하수도연구과) ;
  • 김지혜 (국립환경과학원 상하수도연구과) ;
  • 박상민 (국립환경과학원 상하수도연구과) ;
  • 박주현 (국립환경과학원 상하수도연구과) ;
  • 정현미 (국립환경과학원 상하수도연구과) ;
  • 안태영 (단국대학교 미생물학과) ;
  • 정원화 (국립환경과학원 상하수도연구과)
  • Received : 2013.11.01
  • Accepted : 2013.11.29
  • Published : 2013.12.31

Abstract

Biofilm formed on stainless and copper in water treatment plant was investigated for sixteen weeks. Biofilm reactor was specially designed for this study. It was similar to that of a real distribution pipe. Raw water, coagulated, settled, filtered and treated water were used in this study. The average number of heterotrophic bacteria counts was $1.6{\times}10^4CFU/ml$, $5.8{\times}10^3CFU/ml$, $1.8{\times}10^3CFU/ml$, $1.3{\times}10^2CFU/ml$, 1 CFU/ml, respectively. Density of biofilm bacteria formed on stainless and copper pipes in raw, coagulated and settled water increased above $2.9{\times}10^3CFU/cm^2$ within second weeks while more biofilm bacteria counts were found on the stainless pipe than on the copper pipe. In case of filtered water (free residue chlorine 0.44 mg/L), there was no significant difference in the number of biofilm bacteria on both pipes and biofilm bacteria below $18CFU/cm^2$ were detected on both pipe materials after fifth weeks. Biofilm bacteria were not detected on both pipe materials in treated water (free residue chlorine 0.88 mg/L). According to the results of DGGE analysis, Sphingomonadacae was a dominant species of biofilm bacteria formed on the stainless pipe while the copper pipe had Bradyrhizobiaceae and Sphingomonadaceae as dominant bands. In case of filtered water, a few bands (similar to Propionibacterium sp., Sphingomonas sp., Escherichia sp., and etc.) that have 16S rRNA sequences were detected in biofilm bacteria formed on both pipes after fifth weeks. Stainless pipe had higher species richness and diversity than the copper pipe.

정수처리 시설에서 급 배수관으로 많이 사용되는 스테인리스관과 동관에 형성되는 생물막의 특성에 대해 16주 동안 조사하였다. 생물막 반응기는 실제 배급수관의 구조와 유사하게 설계하였으며, 정수처리장으로 유입되는 상수원수와 약품혼화 응집수, 침전수, 여과수, 처리수를 사용하였다. 평균 종속영양세균수는 $1.6{\times}10^4CFU/ml$, $5.8{\times}10^3CFU/ml$, $1.8{\times}10^3CFU/ml$, $1.3{\times}10^2CFU/ml$, 1 CFU/ml로 각 처리 과정을 거치면서 감소하였다. 스테인리스관과 동관에 형성된 생물막 세균수는 원수, 응집수, 침전수에서 2주만에 $2.9{\times}10^3CFU/cm^2$ 이상으로 증가하였고, 동관보다 스테인리스관에서 생물막 세균수가 높게 검출되었다. 여과수(평균 잔류염소 0.44 mg/L)에서는 두 관 재질에 따른 생물막 세균수의 명확한 차이는 없었으며, 5주 이후부터 두 관재질 모두 $18CFU/cm^2$ 이하의 생물막 세균이 검출되었다. 정수(평균 잔류염소 0.88 mg/L)에서는 두 관 재질 모두 생물막 세균이 검출되지 않았다. DGGE 분석결과, 원수, 응집수, 침전수에서 스테인리스관은 Sphingomonadaceae가 우점이였고, 동관에서는 Bradyrhizobiaceae와 함께 Sphingomonadaceae도 우점이였다. 여과수의경우, 5주차 이후 스테인리스관과 동관에 형성된 생물막에서 Propionibacterium sp., Sphingomonas sp., Escherichia sp. 등과 유사한 16S rRNA 유전자 서열을 가지는 밴드들이 검출되었다. 종 풍부도 및 다양성은 동관에 비해 스테인리스관이 더 높게 나타났다.

Keywords

References

  1. Bereschenko, L.A., Stams, A.J.M., Euverink, G.J.W., and Van Loosdrecht, M.C.M. 2010. Biofilm formation on reverse osmosis membranes is initiated and dominated by Sphigomonas sp. Appl. Environ. Microbiol. 76, 2623-2632. https://doi.org/10.1128/AEM.01998-09
  2. Chang, Y.C., Jung, K., Yoo, Y.S., Kang, M.H., and Randall, A.A. 2002. Characterizations of assimilable organic carbon, biodegradable dissolved organic carbon and bacterial regrowth in distribution systems by water treatment. Kor. J. Env. Hlth. 28, 42-52.
  3. Charackils, W.G. 1988. Bacterial regrowth in distribution system. pp. 13-42. AWWA research doundation. Denver, USA.
  4. Cho, W.S. and Cho, K.S. 2008. Effect of methyl tert-buryl ether and its metabolites on microbial activity and diversity in tidal mud flat. Kor. J. Microbiol. Biotechnol. 36, 336-342.
  5. Clark, R.M. and Sivaganesan, M. 1999. Characterizing the effect of chlorine and chloramine on the formation of biofilm in a simulated drinking water distribution system. EPA, USA.
  6. DiGiano, F.A., Francisco, D.E., Zhang, W., and Todd, L. 2000. Bacterial regrowth in drinking water distribution system: a comparison of durham and raleigh. UNC-WRRI-2000-236 (WRRI Project No.50212). USA.
  7. Folkesson, A., Haagensen, J.A.J., Zampaloni, C., Sternberg, C., and Molin, S. 2008. Biofilm induced tolerance towards antimicriobial pepties. PLoS One 3, e1891. https://doi.org/10.1371/journal.pone.0001891
  8. Hallam, N.B., West, J.R., Forster, C.F., and Simms, J. 2001. The potential for biofilm growth in water distribution system. Water Res. 35, 4063-4071. https://doi.org/10.1016/S0043-1354(01)00248-2
  9. Hidetoshi, M., Takuya, K., Ryuichi, S., Hideki, M., and Isao, Y. 2003. Production of two types of exopolysacchraide by Novosphingobiumroas. J. Biosci. Bioengineer. 95, 152-156. https://doi.org/10.1016/S1389-1723(03)80121-4
  10. Hong, P.Y., Hwang, C., Ling, F., Andersen, G.L., LeChevallier, M.W., and Liu, W.T. 2010. Analysis of bacterial biofilm communities in water meters of a drinking water distribution system via pyrosequencing. Appl. Environ. Microbiol. 76, 5631-5635. https://doi.org/10.1128/AEM.00281-10
  11. Hu, J.Y., Yu, B., Feng, Y.Y., Tan, X.L., Ong, S.L., Ng, W.J., and Hoe, W.C. 2005. Investigation into biofilms in a local drinking water distribution system. Biofilms 2, 19-25. https://doi.org/10.1017/S1479050505001614
  12. Ivone, V.M., Olga, C.N., and Celia, M.M. 2011. Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl. Environ. Microbiol. 77, 5697-5706. https://doi.org/10.1128/AEM.00579-11
  13. Jegatheesan, V., Kastl, G., Fisher, I., Angles, M., and Chandy, J. 2000. Modeling biofilm growth and disinfectant decay in drinking water. Water Sci. Technol. 41, 339-345.
  14. Kim, C.B., Rho, J.B., Lee, H.K., Choi, S.H., Lee, D.H., Park, S.J., and Lee, K.H. 2005. Characteristics of developmental stages in bacteria biofilm formation. Kor. J. Microbiol. Biotechnol. 33, 1-8.
  15. Kim, T.H., Lee, Y.J., Lee, H., Lee, C.H., Ahn, K.C., and Lee, W.S. 2007. Influence of pipe materials on corrosion and bacteria regrowth in a model home plumbing system. J. Environ. Sci. 16, 121-128. https://doi.org/10.5322/JES.2007.16.1.121
  16. Kim, T.H., Lee, Y.J., and Lim, S.J. 2006. The influence of chlorine application on corrosion and bacterial growth in home plumbing systems. J. Environ. Health Sci. 32, 431-439.
  17. LeChevallier, M.W., Babcock, T.M., and Lee, R.G. 1987. Examination and characterization of distribution system biofilms. Appl. Environ. Microbiol. 53, 2714-2724.
  18. LeChevallier, M.W., Lowry, C.D., and Lee, R.G. 1990. Disinfecting biofilms in a model distribution system. J. Am. Water Works Assoc. 82, 87-99.
  19. Lee, D.G. 2004. Safety investigation of tap water and biofilm by isolated bacteria. Kor. J. Env. Hlth. 30, 207-213.
  20. Lee, D.G., Lee, J.H., Lee, S.H., Ha, B.J., and Ha, J.M. 2004. CLPP of biofilm on different pipe materials in drinking water distribution system. J. Life Sci. 14, 891-894. https://doi.org/10.5352/JLS.2004.14.6.891
  21. Lehtola, M.J., Juhna, T., Miettinen, I.T., Vartiainen, T., and Martikainen, P.J. 2004. Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia. Int. J. Syst. Evol. Microbiol. 31, 489-494.
  22. Lehtola, M.J., Miettinen, I.T., Vartiainen, T., Myllykangas, T., and Martikainen, P.J. 2001. Microbially available organic carbon phosphorus, and microbial growth in ozonated drinking water. Water Res. 35, 1635-1640. https://doi.org/10.1016/S0043-1354(00)00449-8
  23. Manuel, C.M., Nunes, O.C., and Melo, L.F. 2007. Dynamics of drinking water biofilm in flow/non-flow conditions. Water Res. 41, 551-562. https://doi.org/10.1016/j.watres.2006.11.007
  24. Momba, M.N.B. and Makala, N. 2004. Comparing the effect of various pipe materials on biofilm formation in chlorinated and combined chlorine-chloraminated water systems. Water SA. 30, 175-182.
  25. Muyzer, G., Waal, E.C.De., and Uitterlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700.
  26. O'Toole, G.A., Kaplan, H.R., and Kolter, R. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49-79. https://doi.org/10.1146/annurev.micro.54.1.49
  27. Park, S.J., Cho, J.C., and Kim, S.J. 1993. Bacterial distribution and variation in water supply systems. J. Microbiol. 31, 245-254.
  28. Park, S.J., Cho, J.C., and Kim, S.J. 1994. Microbial succession on biofilms in drinking water pipes. J. Microbiol. 32, 593-601.
  29. Park, S.K., Chol, S.C., and Kim, Y.K. 2006. Comparison of biofilm removal characterisitics by chlorine and monochloramine in simulated dringking water distribution pipe. J. KSEE 28, 26-33.
  30. Ronaghi, M. 2001. Pyrosequencing sheds light on DNA sequencing. Genome. Res. 11, 3-11. https://doi.org/10.1101/gr.11.1.3
  31. Saiki, R.K., Scharf, S., Faloona, F., Mulis, K.B., Erlich, H.A., and Arnheim, N. 1985. Ezymaitc amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350-1354. https://doi.org/10.1126/science.2999980
  32. Schmeisser, C., Stockigt, C., Raasch, C., Wingender, J., Timmis, K.N., Wenderth, D.F., Flemming, H.C., Liesegang, H., Schmitz, R.A., Jaeger, K.E., and et al. 2003. Metagenome survey of biofilms in drinking-water networks. Appl. Environ. Microbiol. 69, 7298-7309. https://doi.org/10.1128/AEM.69.12.7298-7309.2003
  33. U.S. Envirionmental Protection Agency Office of Ground Water and Drinking Water Standards and Risk Management Division. 2002. Health Risks from Microbial Growth and Biofilms in Drinking Water Distribution Systems. EPA.
  34. Van der wende, E. and Charackils, W.G. 1990. Biofilms in potable water distribution system. In McFeters, G.A. (ed.), Drinking water microbiology, pp. 249-268. Springer-Verlag, New York, USA.
  35. Van der wende, E., Charackils, W.G., and Smith, D.B. 1989. Biofilm and bacterial drinking water quality. Water Res. 23, 1313-1322. https://doi.org/10.1016/0043-1354(89)90193-0
  36. Yoon, T.H. and Lee, Y.J. 2004. Bacterial regrowth in water distribution systems and its relationship to the water quality: case study of two distribution systems in Korea. J. Microbiol. Biotechonol. 14, 262-267.
  37. Yoon, T.H., Lee, Y.J., Rhee, O.J., Lee, E.W., Kim, H., Lee, D.C., and Kim, S.H. 2002. Heterotrophic bacteria in terms of free chlorine residuals in water distribution systems. Kor. J. Env. Hlth. Soc. 28, 9-18.
  38. Zacheus, O.M., Iivanainen, E.K., Nissinen, T.K., Lehtola, M.J., and Martikainen, P.J. 1999. Bacterial biofilm formation on polyvinyl chloride, polyethylene and stainless steel exposed to ozonated water. Water Res. 34, 63-70.
  39. Zhou, L.L., Zhang, Y.J., Li, X., and Li, G.B. 2008. Effect of chloramines disinfection for biofilm formation control on copper and stainless steel pipe materials. Huan Jing KeXue. 29, 3372-3375.

Cited by

  1. 환경 유형에 따른 바이오에어로졸 중 배양성 세균 동정 및 계통분석 vol.43, pp.2, 2013, https://doi.org/10.4014/mbl.1503.03008