DOI QR코드

DOI QR Code

Combined Chlorite-Monochloramine Application for Controlling Nitrifying and Heterotrophic Bacteria in Drinking Water Distribution System

상수관망에서 Chlorite-Monochloramine 소독제를 이용한 질산화 세균 및 종속영양세균의 제어

  • Park, Se-Keun (Department of Environmental Engineering, Kangwon National University) ;
  • Kim, Yeong-Kwan (Department of Environmental Engineering, Kangwon National University) ;
  • Choi, Sung-Chan (Department of Environmental Science & Biotechnology, Hallym University)
  • Received : 2013.09.23
  • Accepted : 2013.10.10
  • Published : 2013.12.31

Abstract

In the present work, the reactors that harbor bacterial biofilms including ammonia-oxidizing bacteria (AOB) and heterotrophic bacteria were treated with a continuous dose of chlorite ($0.66{\pm}0.01mg/L$) either with or without monochloramine at $1.77{\pm}0.03mg/L$. Both chlorite alone and combined chlorite-monochloramine applications effectively reduced biofilm and bulk AOB levels to near or below the detection limit ($0.6MPN/cm^2$ and 0.2 MPN/ml). The combined chlorite-monochloramine application exhibited greater AOB inactivation than chlorite alone. Unlike AOB, heterotrophic plate count (HPC) was unaffected by chlorite alone. In contrast to chlorite-only application, a combination of chlorite and monochloramine resulted in a significant reduction in HPC levels with log reductions of 3.1 and 3.0 for biofilm and bulk water, respectively. The results demonstrate that the combined chlorite-monochloramine application can provide an effective treatment for the inhibition of AOB and heterotrophic bacteria in a drinking water distribution system.

본 연구에서는 암모니아 산화세균과 종속영양세균을 포함한 세균 생물막에 대한 chlorite ($0.66{\pm}0.01mg/L$)의 영향을 monochloramine ($1.77{\pm}0.03mg/L$)의 존재 유무에 따른 조건에서 알아보았다. Chlorite 단독 또는 monochloramine과 함께 적용한 경우에서 공히 생물막과 물 시료에 존재하는 암모니아 산화세균은 검출한계($0.6MPN/cm^2$ and 0.2 MPN/ml)에 근접한 수준으로 감소되는 것으로 나타났지만, chlorite/monochloramine으로 함께 첨가했을 때의 저해효과가 더욱 크게 나타났다. 종속영양세균의 경우 암모니아 산화세균과 달리 chlorite에 의한 저해가 거의 나타나지 않았다. 하지만 chlorite/monochloramine으로 적용한 경우 생물막과 물 시료에서 종속영양세균의 개체 수는 대조군 대비 각각 3.1 log와 3.0 log 감소하는 상당한 저해 효과를 보여주었다. 이러한 결과는 상수관망에 형성된 생물막에 존재하는 질산화 세균과 종속영양세균에 대한 효과적 제어방법중의 하나로 chlorite와 monochloramine 혼합사용의 성공적 가능성을 제시해 준다.

Keywords

References

  1. APHA. 2005. Standard Methods for the Examination of Water and Wastewater. 21st ed., American Public Health Association, Washington, D.C., USA.
  2. Baribeau, H. 2006. Growth and inactivation of nitrifying bacteria. In Kosyra, M.K. (ed.), Fundamentals and Control of Nitrification in Chloraminated Drinking Water Distribution Systems. Manual of Water Supply Practices M56. American Water Works Association, Denver, CO, USA.
  3. Baribeau, H., Prévost, M., Desjardins, R., Lafrance, P., and Gates, D.J. 2002. Chlorite and chlorate ion variability in distribution systems. J. Am. Water Works Assoc. 94, 96-105.
  4. Bichai, F. and Barbeau, B. 2006. Assessing the disinfecting power of chlorite in drinking water. Water Qual. Res. J. Canada 41, 375-382.
  5. Furumai, H. and Rittmann, B.E. 1994. Evaluation of multiple-species biofilm and floc processes using a simplified aggregate model. Water Sci. Technol. 29, 439-446.
  6. Gagnon, G.A., Rand, J.L., O'Leary, K.C., Rygel, A.C., Chauret, C., and Andrews, R.C. 2005. Disinfectant efficacy of chlorite and chlorine dioxide in drinking water biofilms. Water Res. 39, 1809-1817. https://doi.org/10.1016/j.watres.2005.02.004
  7. Gordon, G. 2001. Is all chlorine dioxide created equal? J. Am. Water Works Assoc. 93, 163-174. https://doi.org/10.1002/j.1551-8833.2001.tb09186.x
  8. Karmakar, S.R. 1999. Chemical technology in the pre-treatment processes of textiles, pp. 160-216. Elsevier Science B.V., Amsterdam, The Netherlands.
  9. LeChevallier, M.W., Lowry, C.H., and Lee, R.G. 1990. Disinfecting biofilm in a model distribution system. J. Am. Water Works Assoc. 82, 85-99. https://doi.org/10.1002/j.1551-8833.1990.tb06982.x
  10. Ling, F. and Liu, W.T. 2013. Impact of chloramination on the development of laboratory-grown biofilms fed with filter-pretreated groundwater. Microbes Environ. 28, 50-57. https://doi.org/10.1264/jsme2.ME12095
  11. McGuire, M.J., Lieu, N.I., and Pearthree, M.S. 1999. Using chlorite ion to control nitrification. J. Am. Water Works Assoc. 91, 52-61.
  12. McGuire, M.J., Pearthree, M.S., Blute, N.K., Arnold, K.F., and Hoogerwerf, T. 2006. Nitrification control by chlorite ion at pilot scale. J. Am. Water Works Assoc. 98, 95-105. https://doi.org/10.1002/j.1551-8833.2006.tb07567.x
  13. McGuire, M.J., Wu, X., Blute, N.K., Askenaizer, D., and Qin, G. 2009. Prevention of nitrification using chlorite ion: results of a demonstration project in Glendale, Calif. J. Am. Water Works Assoc. 101, 47-59. https://doi.org/10.1002/j.1551-8833.2009.tb09970.x
  14. Mitcham, R.P., Shelley, M.W., and Wheadon, C.M. 1983. Free chlorine versus ammonia-chlorine: disinfection, trihalomethane formation, and zooplankton removal. J. Am. Water Works Assoc. 75, 196-198. https://doi.org/10.1002/j.1551-8833.1983.tb05109.x
  15. Norman, T.S., Harms, L.L., and Looyenga, R.W. 1980. The use of chloramines to prevent trihalomethane formation. J. Am. Water Works Assoc. 72, 176-180. https://doi.org/10.1002/j.1551-8833.1980.tb04491.x
  16. Norton, C.D. and LeChevallier, M.W. 1997. Chloramination: it's effect on distribution system water quality. J. Am. Water Works Assoc. 89, 66-77. https://doi.org/10.1002/j.1551-8833.1997.tb08260.x
  17. O'Connor, T.L., Murphy, B., and O'Connor, J.T. 2001. Controlling nitrification in a water distribution system using sodium chlorite. Water Eng. Manage. 148, 14-16.
  18. Odell, L.H., Kirmeyer, G.J., Wilczak, A., Jacangelo, J.G., Marcinko, J.P., and Wolfe, R.L. 1996. Controlling nitrification in chloraminated systems. J. Am. Water Works Assoc. 88, 86-98.
  19. Rahman, M.S., Encarnacion, G., and Camper, A.K. 2011. Nitrification and potential control mechanisms in simulated premises plumbing. Water Res. 45, 5511-5522. https://doi.org/10.1016/j.watres.2011.08.009
  20. Skadsen, J. 2002. Effectiveness of high pH in controlling nitrification. J. Am. Water Works Assoc. 94, 73-83. https://doi.org/10.1002/j.1551-8833.2002.tb09508.x
  21. US EPA. 1997. EPA Method 300.1. Determination of Inorganic Anions in Drinking Water by Ion Chromatography. Revision 1.0. U.S. Environmental Protection Agency, Cincinnati, OH, USA.
  22. US EPA. 2004. The Effectiveness of Disinfectant Residuals in the Distribution System. EPA 68-C-00-113. U.S. Environmental Protection Agency, Washington, D.C., USA.
  23. US EPA. 2012. 2012 Edition of the Drinking Water Standards and Health Advisories. EPA 822-S-12-001. U.S. Environmental Protection Agency, Washington, D.C., USA.
  24. Vikesland, P.J., Ozekin, K., and Valentine, R.L. 2001. Monochloramine decay in model and distribution system waters. Water Res. 35, 1766-1776. https://doi.org/10.1016/S0043-1354(00)00406-1
  25. Wilczak, A., Hoover, L.L., and Lai, H.H. 2003. Effects of treatment changes on chloramine demand and decay. J. Am. Water Works Assoc. 95, 94-106.
  26. Wilczak, A., Jacangelo, J.G., Marcinko, J.P., Odell, L.H., Kirmeyer, G.J., and Wolfe, R.L. 1996. Occurrence of nitrification in chloraminated distribution systems. J. Am. Water Works Assoc. 88, 74-85.
  27. Wolfe, R.L., Lieu, N.I., Izaguirre, G., and Means, E.G. 1990. Ammonia-oxidizing bacteria in a chloraminated distribution system: seasonal occurrence, distribution and disinfection resistance. Appl. Environ. Microbiol. 56, 451-462.
  28. Zhang, Y., Griffin, A., and Edwards, M. 2008. Nitrification in premise plumbing: role of phosphate, pH and pipe corrosion. Environ. Sci. Technol. 42, 4280-4284. https://doi.org/10.1021/es702483d
  29. Zhang, Y., Love, N., and Edwards, M. 2009. Nitrification in drinking water systems. Crit. Rev. Environ. Sci. Technol. 39, 153-208. https://doi.org/10.1080/10643380701631739