References
- Burnett, W.J. and Mckenzie, J.D. 1997. Subcuticular bacteria from the brittle star Ophiactis ball (Echinodermata): Ophiuroideao represent a new lineage of extracellular marine symbionts in a subdivision of the class Protebacteria. Appl. Environ. Microbiol. 63, 1721-1724.
- De La Fuente, J.A. and Manzanaro, S. 2003. Aldose reductase inhibitors from natural sources. Nat. Prod. Rep. 20, 243-251. https://doi.org/10.1039/b204709h
- Dupont, S., Corre, E., Li, Y., Vacelet, J., and Bourguet‐Kondracki, M.L. 2013. First insights into the microbiome of a carnivorous sponge. FEMS Microbiol. Ecol. 86, 520-531. https://doi.org/10.1111/1574-6941.12178
- Friedrich, A.B., Fischer, I., Proksch, P., Hacker, J., and Hentschel, U. 2001. Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol. Ecol. 38, 105-113. https://doi.org/10.1111/j.1574-6941.2001.tb00888.x
- Groudieva, T., Kambourova, M., Yusef, H., Royter, M., Grote, R., Trinks, H., and Antranikian, G. 2004. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8, 475-488. https://doi.org/10.1007/s00792-004-0409-0
- Guangyi, W. 2006. Diversity and biotechnological potential of the sponge-associated microbial consortia. J. Ind. Microbiol. Biotechnol. 33, 545-551. https://doi.org/10.1007/s10295-006-0123-2
- Haber, M. and Ilan, M. 2013. Diversity and antibacterial activity of bacteria cultured from Mediterranean Axinella spp. sponges. J. Appl. Microbiol. Doi: 10.1111/jam.12401
- Handeley, S., Kelly, S., and Kelly, M. 2003. Non-destructive video image analysis method for measuring growth in sponge farming: Preliminary results from the New Zealand bath-sponge Spongia (Heterofibria) manipulatus. N. Z. J. Mar. Freshwater Res. 37, 613-621. https://doi.org/10.1080/00288330.2003.9517192
- Hentschel, U., Hopke, J., Horn, M., Friedrich, A.B., Wagner, M., Hacker, J., and Moore, B.S. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68, 4431-4440. https://doi.org/10.1128/AEM.68.9.4431-4440.2002
- Imhoff, J.F. 2001. True marine and halophilic anoxygenic phototrophic bacteria. Arch. Microbiol. 176, 243-254. https://doi.org/10.1007/s002030100326
- Jackson, S.A., Kennedy, J., Morrissey, J.P., O'Gara, F., and Dobson, A.D. 2012. Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters. Microb. Ecol. 64, 105-116. https://doi.org/10.1007/s00248-011-0002-x
- Jeong, I.H., Kim, K.H., and Park, J.S. 2013. Analysis of bacterial diversity in sponges collected off Chujado, an Island in Korea, using barcoded 454 pyrosequencing: Analysis of a distinctive sponge group containing Chloroflexi. J. Microbiol. 51, 570-577. https://doi.org/10.1007/s12275-013-3426-9
- Kennedy, J., Baker, P., Piper, C., Cotter, P.D., Walsh, M., Mooij, M.J., Bourke, M.B., Rea, M.C., O'Connor, P.M., Ross, R.P., and et al. 2009. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish Waters. Mar. Biotechnol. 11, 384-396. https://doi.org/10.1007/s10126-008-9154-1
- Lau, W.W.Y., Jumars, P.A., and Armbrust, E.V. 2002. Genetic diversity of attached bacteria in the hindgut of the deposit-feeding shrimp Neotrypaea (formerly Callianassa) californiensis (Decapoda:Thalassinidae). Microb. Ecol. 43, 455-466. https://doi.org/10.1007/s00248-001-1043-3
- Li, C.W., Chen, J.Y., and Hua, T.E. 1998. Precambrian sponges with cellular structures. Science 279, 879-882. https://doi.org/10.1126/science.279.5352.879
- Li, Z., Hu, Y., Liu, Y., Huang, Y., He, L., and Miao, X. 2007. 16S rDNA clone library-based bacterial phylogenetic diversity associated with three South China Sea sponges. World J. Microbiol. Biotechnol. 23, 1265-1272. https://doi.org/10.1007/s11274-007-9359-x
- Newman, D.J. and Cragg, G.M. 2004. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 67, 1216-1238. https://doi.org/10.1021/np040031y
- Olson, J.B. and McCarthy, P.J. 2005. Associated bacterial communities of two deep-water sponges. Aquat. Microb. Ecol. 39, 47-55. https://doi.org/10.3354/ame039047
- Park, J.S. 2010. Bacterial community diversity associated with two marine sponges from the South Pacific Ocean based on 16S rDNA-DGGE analysis. Kor. J. Microbiol. 46, 255-261.
- Piel, J. 2009. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 26, 338-362. https://doi.org/10.1039/b703499g
- Ridley, C.P., Faulkner, D.J., and Haygood, M.G. 2005. Investigation of Oscillatoria spongeliae-dominated bacterial communities in four Dictyoceratid sponges. Appl. Environ. Microbiol. 71, 7366-7375. https://doi.org/10.1128/AEM.71.11.7366-7375.2005
- Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
- Schottner, S., Hoffmann, F., Cardenas, P., Rapp, H.T., Boetius, A., and Ramette, A. 2013. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS One 8, e5550.
- Sekiguchi, H., Koshikawa, H., Hiroki, M., Murakami, S., Xu, K., Watanabe, M., Nakahara, T., Zhu, M., and Uchiyama, H. 2002. Bacterial distribution and phylogenetic diversity in the Changjiang estuary before the construction of the three gorges dam. Microb. Ecol. 43, 82-91. https://doi.org/10.1007/s00248-001-0034-8
- Stouthamer, R., Breeuwer, J.A.J., and Hurst, G.D.D. 1999. Wolbachiapipientis: microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53, 71-102. https://doi.org/10.1146/annurev.micro.53.1.71
- Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
- Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Wagner-Dobler, I., Beil, W., Lang, S., Meiners, M., and Laatsch, H. 2002. Integrated approach to explore the potential of marine microorganisms for the production of bioactive metabolites. Adv. Biochem. Eng. Biotechnol. 74, 207-238.
- Wang, Z., Ling, B., Zhang, R., Suo, Y., Liu, Y., Yu, Z., and Liu, C. 2009. Docking and molecular dynamics studies toward the binding of new natural phenolic marine inhibitors and aldose reductase. J. Mol. Graph. Model. 28, 162-169. https://doi.org/10.1016/j.jmgm.2009.06.003
- Webster, N.S., Negri, A.P., Munro, M.M., and Battershill, C.N. 2004. Diverse microbial communities inhabit Antarctic sponges. Environ. Microbiol. 6, 288-300. https://doi.org/10.1111/j.1462-2920.2004.00570.x
- Weidner, S., Arnold, W., Stackebrandt, E., and Puhler, A. 2000. Phylogenetic analysis of bacterial communities associated with leaves of the seagrass Halophila stipulacea by a culture-independent small-subunit rRNA gene approach. Microb. Ecol. 39, 22-31. https://doi.org/10.1007/s002489900194
- White, J.R., Patel, J., Ottesen, A., Arce, G., Blackwelder, P., and Lopez, J.V. 2012. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability. PLoS One 7, e38204. https://doi.org/10.1371/journal.pone.0038204
Cited by
- Marine sponge aquaculture towards drug development: An ongoing history of technical, ecological, chemical considerations and challenges vol.21, pp.None, 2013, https://doi.org/10.1016/j.aqrep.2021.100813