DOI QR코드

DOI QR Code

Toward The Fecal Microbiome Project

분변 미생물군집 프로젝트

  • Unno, Tatsuya (College of Molecular Life Sciences, Jeju National University)
  • Received : 2013.11.25
  • Accepted : 2013.12.17
  • Published : 2013.12.31

Abstract

Since the development of the next generation sequencing (NGS) technology, 16S rRNA gene sequencing has become a major tool for microbial community analysis. Recently, human microbiome project (HMP) has been completed to identify microbes associated with human health and diseases. HMP achieved characterization of several diseases caused by bacteria, especially the ones in human gut. While human intestinal bacteria have been well characterized, little have been studied about other animal intestinal bacteria. In this study, we surveyed diversity of livestock animal fecal microbiota and discuss importance of studying fecal microbiota. Here, we report the initiation of the fecal microbiome project in South Korea.

차세대 염기서열 분석(next generation sequencing, NGS) 기술의 발전으로 16S rRNA의 염기서열 분석이 미생물 군집 분석의 주된 방법으로 사용되고 있다. 인간의 건강과 질병에 관여하는 미생물들을 밝혀내기 위한 인간 미생물군집 프로젝트(human microbiome project, HMP)가 최근에 완료되었다. HMP는 세균에 의해 발생하는 여러 질병들의 특성들을 밝혀내었고, 특히 장에 서식하는 세균들에 대해 많은 연구가 수행되었다. 비록 인간의 장내 세균들에 대한 연구는 잘 수행되어왔지만, 다른 가축의 장내 세균에 대한 연구는 거의 이루어지지 않았다. 본 연구에서는 가축의 분변 미생물 다양성에 관해 조사하였고, 분변미생물 생태연구의 중요성을 제시 할 것이다. 한국에서의 분변 미생물 군집 프로젝트(fecal microbiome project) 시작을 본 연구논문을 통해 보고하고자 한다.

Keywords

References

  1. Bell, M.J., Wall, E., Russell, G., Simm, G., and Stott, A.W. 2011. The effect of improving cow productivity, fertility, and longevity on the global warming potential of dairy systems. J. Dairy Sci. 94, 3662-3678. https://doi.org/10.3168/jds.2010-4023
  2. Cani, P.D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A.M., Delzenne, N.M., and Burcelin, R. 2008. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470-1481. https://doi.org/10.2337/db07-1403
  3. Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S.M., Betley, J., Fraser, L., Bauer, M., and et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621-1624. https://doi.org/10.1038/ismej.2012.8
  4. Edrington, T.S., Fox, W.E., Callaway, T.R., Anderson, R.C., Hoffman, D.W., and Nisbet, D.J. 2009. Pathogen prevalence and influence of composted dairy manure application on antimicrobial resistance profiles of commensal soil bacteria. Foodborne Pathog. Dis. 6, 217-224. https://doi.org/10.1089/fpd.2008.0184
  5. Fan, C., Li, S., Li, C., Ma, S., Zou, L., and Wu, Q. 2012. Isolation, identification and cellulase production of a cellulolytic bacterium from intestines of giant panda. Wei Sheng Wu Xue Bao 52, 1113-1121.
  6. Floch, M.H. 2010. Fecal bacteriotherapy, fecal transplant, and the microbiome. J. Clin. Gastroenterol. 44, 529-530. https://doi.org/10.1097/MCG.0b013e3181e1d6e2
  7. Foster, E.K. 2003. METASTATS: behavioral science statistics for Microsoft Windows and the HP49G programmable calculator. Behav. Res. Methods Instrum. Comput. 35, 325-328. https://doi.org/10.3758/BF03202560
  8. Fox, J.G., Feng, Y., Theve, E.J., Raczynski, A.R., Fiala, J.L., Doernte, A.L., Williams, M., McFaline, J.L., Essigmann, J.M., Schauer, D.B., and et al. 2010. Gut microbes define liver cancer risk in mice exposed to chemical and viral transgenic hepatocarcinogens. Gut 59, 88-97. https://doi.org/10.1136/gut.2009.183749
  9. Greenblum, S., Turnbaugh, P.J., and Borenstein, E. 2012. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc. Natl. Acad. Sci. USA 109, 594-599. https://doi.org/10.1073/pnas.1116053109
  10. Ihara, Y., Hyodo, H., Sukegawa, S., Murakami, H., and Morimatsu, F. 2013. Isolation, characterization, and effect of administration in vivo, a novel probiotic strain from pig feces. Anim. Sci. J. 84, 434-441. https://doi.org/10.1111/asj.12020
  11. Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., and Schloss, P.D. 2013. Development of a dual-index sequencing strategy and MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112-5120. https://doi.org/10.1128/AEM.01043-13
  12. Li, Y., Kundu, P., Seow, S.W., de Matos, C.T., Aronsson, L., Chin, K.C., Karre, K., Pettersson, S., and Greicius, G. 2012. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 33, 1231-1238. https://doi.org/10.1093/carcin/bgs137
  13. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., and et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541. https://doi.org/10.1128/AEM.01541-09
  14. Serino, M., Blasco-Baque, V., and Burcelin, R. 2012. Microbes on-air: gut and tissue microbiota as targets in type 2 diabetes. J. Clin. Gastroenterol. 46 Suppl, S27-28. https://doi.org/10.1097/MCG.0b013e318264e844
  15. Topp, E., Chapman, R., Devers-Lamrani, M., Hartmann, A., Marti, R., Martin-Laurent, F., Sabourin, L., Scott, A., and Sumarah, M. 2013. Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading sp. J. Environ. Qual. 42, 173-178. https://doi.org/10.2134/jeq2012.0162
  16. Unno, T., Jang, J., Han, D., Kim, J.H., Sadowsky, M.J., Kim, O.S., Chun, J., and Hur, H.G. 2010. Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. Environ. Sci. Technol. 44, 7777-7782. https://doi.org/10.1021/es101500z
  17. Zhou, Z., He, S., Liu, Y., Cao, Y., Meng, K., Yao, B., Ringo, E., and Yoon, I. 2011. Gut microbial status induced by antibiotic growth promoter alters the prebiotic effects of dietary DVAQUA(R) on Aeromonas hydrophila-infected tilapia: production, intestinal bacterial community and non-specific immunity. Vet. Microbiol.149, 399-405. https://doi.org/10.1016/j.vetmic.2010.11.022