DOI QR코드

DOI QR Code

Protective Effects of the Fermented Laminaria japonica Extract on Oxidative Damage in LLC-PK1 Cells

  • Park, Min-Jung (Department of Food Science and Nutrition, Pusan National University) ;
  • Han, Ji-Sook (Department of Food Science and Nutrition, Pusan National University)
  • Received : 2013.09.26
  • Accepted : 2013.12.17
  • Published : 2013.12.31

Abstract

This study investigated the protective effect of the butanol (BuOH) fraction from fermented Laminaria japonica extract (BFLJ) on AAPH-induced oxidative stress in porcine kidney epithelial cells (LLC-PK1 cells). L. japonica was fermented by Aspergillus oryzae at $35{\pm}1^{\circ}C$ for 72 h. Freeze-dried fermented L. japonica was extracted with distilled water, and the extracted solution was mixed with ethanol and then centrifuged. The supernatant was subjected to sequential fractionation with various solvents. The BuOH fraction was used in this study because it possessed the strongest antioxidant activity among the various solvent fractions. The BuOH fraction of fermented L. japonica had a protective effect against the AAPH-induced LLC-PK1 cells damage and increased cell viability while reducing lipid peroxidation formation and increased activities of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. The inhibitory effect of BFLJ on lipid peroxidation formation had a higher value of $0.11{\pm}0.01nmol$ MDA at $100{\mu}g/mL$ concentration in comparison with intact BuOH fraction showing $0.22{\pm}0.08nmol$ MDA at the same concentration. Furthermore, BFLJ treatment increased glutathione concentration. GSH concentration in the cell treated with BFLJ of $100{\mu}g/mL$ was $1.80pmol/L{\times}10^5cells$. These results indicate that BFLJ protects the LLC-PK1 cells against AAPH-induced cell damage by inhibiting lipid peroxidation formation and increasing antioxidant enzyme activities and glutathione concentration.

Keywords

References

  1. Yan X, Nagata T, Fan X. 1998. Antioxidative activities in some common seaweeds. Plant Foods Hum Nutr 52: 253-262. https://doi.org/10.1023/A:1008007014659
  2. Percival E, McDowell RH. 1967. Chemistry and enzymology of marine algal polysaccharides. Academic Press, New York, NY, USA. p 157-175.
  3. Ruperez P, Ahrazem O, Leal JA. 2002. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 50:840-845. https://doi.org/10.1021/jf010908o
  4. Chandini SK, Ganesan P, Bhaskar N. 2008. In vitro antioxidant activities of three selected brown seaweeds of India. Food Chem 107: 707-713. https://doi.org/10.1016/j.foodchem.2007.08.081
  5. Kang JY, Khan MNA, Park NH, Cho JY, Lee MC, Fujii H, Hong YK. 2008. Antipyretic, analgesic, and anti-inflammatory activities of the seaweed Sargassum fulvellum and Sargassum thunbergii in mice. J Ethnopharmacol 116: 187-190. https://doi.org/10.1016/j.jep.2007.10.032
  6. Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Kido M, Mori H, Nakayama Y, Takahashi M. 1989. Structure of an antiplasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome Okamura and inhibitory activities of its derivatives on plasma plasmin inhibitors. Chem Pharm Bull (Tokyo) 37: 349-353. https://doi.org/10.1248/cpb.37.349
  7. Lee SH, Min KH, Han JS, Lee DH, Park DB, Jung WK, Park PJ, Jeon BT, Kim SK, Jeon YJ. 2012. Effects of brown alga, Ecklonia cava on glucose and lipid metabolism in C57BL/ KsJ-db/db mice, a model of type 2 diabetes mellitus. Food Chem Toxicol 50: 575-582. https://doi.org/10.1016/j.fct.2011.12.032
  8. Han J, Kang S, Choue R, Kim H, Leem K, Chung S, Kim C, Chung J. 2002. Free radical scavenging effect of Diospyros kaki, Laminaria japonica and Undaria pinnatifida. Fitoterapia 73:710-712. https://doi.org/10.1016/S0367-326X(02)00236-8
  9. Okai Y, Higashi-Okai K, Nakamura S. 1993. Identification of heterogenous antimutagenic activities in the extract of edible brown seaweeds, Laminaria japonica (Makonbu) and Undaria pinnatifida (Wakame) by the umu gene expression system in Salmonella typhimurium (TA1535/pSK1002). Mutat Res 303: 63-70. https://doi.org/10.1016/0165-7992(93)90096-E
  10. Lee KS, Bae BS, Bae MJ, Jang MA, Seo JS, Choi YS. 1999. Effect of sea tangle and metformin on lipid peroxide and antioxidants levels in diabetic rats. Korean J Nutr 32: 230-238.
  11. Lahaye M, Kaeffer B. 1997. Seaweeds dietary fibers: structure, physic-chemical and biological properties relevant to intestinal physiology. Sciences des Aliments 17: 563-584.
  12. Matsukawa R, Dubinsky Z, Kishimoto E, Masaki K, Masuda Y, Takeuchi T, Chihara M, Yamamoto Y, Niki E, Karube I. 1997. A comparison of screening methods for antioxidant activity in seaweeds. J Appl Phycol 9: 29-35. https://doi.org/10.1023/A:1007935218120
  13. Park MJ, Han JS. 2006. Radical scavenging and antioxidant activities of fermented Laminaria japonica extracts. J Food Sci Nutr 11: 10-16. https://doi.org/10.3746/jfn.2006.11.1.010
  14. Nan JX, Park EJ, Nam JB, Zhao YZ, Cai XF, Kim YH, Sohn DH, Lee JJ. 2004. Effect of Acanthopanax koreanum Nakai (Araliaceae) on D-galactosamine and lipopolysaccharideinduced fulminant hepatitis. J Ethnopharmacol 92: 71-77. https://doi.org/10.1016/j.jep.2004.02.007
  15. Nagal T, Inoue R, Inoue H, Suzuki N. 2002. Scavenging capacities of pollen extracts from Cistus ladaniferus on autoxidation, superoxide radicals, hydroxyl radicals and DPPH radicals. Nutr Res 22: 519-526. https://doi.org/10.1016/S0271-5317(01)00400-6
  16. Rao RSP, Muralikrishna G. 2004. Non-starch polysaccharidephenolic acid complexes from native and germinated cereals and millet. Food Chem 84: 527-531. https://doi.org/10.1016/S0308-8146(03)00274-7
  17. Piao XL, Park IH, Baek SH, Kim HY, Park MK, Park JH. 2004. Antioxidative activity of furanocoumarins isolated from Angelicae dahuricae. J Ethnopharmacol 93: 243-246. https://doi.org/10.1016/j.jep.2004.03.054
  18. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47: 936-942.
  19. Fraga CG, Leibovitz BE, Tappel AL. 1988. Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic Biol Med 4: 155-161. https://doi.org/10.1016/0891-5849(88)90023-8
  20. Tietze F. 1969. Enzymic method for quantitative determination of nanogram amounts of total and oxidaized glutathione: applications to mammalian blood and other tissue. Anal Biochem 27: 502-522. https://doi.org/10.1016/0003-2697(69)90064-5
  21. Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  22. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  23. Lawrence RA, Burk RF. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71: 952-958. https://doi.org/10.1016/0006-291X(76)90747-6
  24. Yokozawa T, Cho EJ, Hara Y, Kitani K. 2000. Antioxidative activity of green tea treated with radical initiator 2,2'-azobis (2-amidinopropane) dihydrochloride. J Agric Food Chem 48:5068-5073. https://doi.org/10.1021/jf000253b
  25. Sevanian A, Hochstein P. 1985. Mechanism and consequence of lipid peroxidation in biological systems. Annu Rev Nutr 5:365-390. https://doi.org/10.1146/annurev.nu.05.070185.002053
  26. Hochstein P, Jain SK. 1981. Association of lipid peroxidation and polymerization of membrane proteins with erythrocyte aging. Fed Proc 40: 183-188.
  27. Cho EJ, Yokozawa T, Rhyu DY, Mitsuma T, Terasawa K, Park JC. 2000. Protective activity from hydrophilic and lipophilic free radical generators of Wen-Pi-Tang and its crude drug extracts in LLC-PK1 cells. J Tradit Med 17: 245-252.
  28. Tasi CH, Chern CL, Liu TZ. 2000. Antioxidant action of glutathion: its reaction with superoxide anion and hydroxyl radicals. J Biomed Lab Sci 12: 107-111.
  29. Reed DJ, Fariss MW. 1984. Glutathion depletion and susceptibility. Pharmacol Rev 36: 25S-33S.
  30. Ge L, Peng W, Haijin M. 2011. Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy 36: 84-89. https://doi.org/10.1016/j.renene.2010.06.001
  31. Dumitriu S. 1998. Polysaccharides: structural diversity and functional versatility. Markker Deccer Inc., New York, NY, USA. p 20-55.
  32. Chevolot L, Foucault A, Chaubet F, Kervarec N, Sinquin C, Fisher AM, Boisson-Vidal C. 1999. Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydr Res 319: 154-165. https://doi.org/10.1016/S0008-6215(99)00127-5
  33. Chevolot L, Mulloy B, Ratiskol J, Foucault A, Colliec-Jouault S. 2001. A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydr Res 330: 529-535. https://doi.org/10.1016/S0008-6215(00)00314-1
  34. Chizhov AO, Dell A, Morris HR, Haslam SM, McDowell RA, Shashkov AS, Nifant'ev NE, Khatuntseva EA, Usov AI. 1999. A study of fucoidan from the brown seaweed Chorda filum. Carbohydr Res 320: 108-119. https://doi.org/10.1016/S0008-6215(99)00148-2
  35. McClure MO, Moore JP, Blanc DF, Scotting P, Cook GM, Keynes RJ, Weber JN, Davies D, Weiss RA. 1992. Investigations into the mechanism by which sulfated polysaccharides inhibit HIV infection in vitro. AIDS Res Hum Retroviruses 8: 19-26. https://doi.org/10.1089/aid.1992.8.19
  36. Witvrouw M, De Clercq E. 1997. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 29: 497-511. https://doi.org/10.1016/S0306-3623(96)00563-0
  37. Schaeffer DJ, Krylov VS. 2000. Anti-HIV activity of extracts and cyanobacteria. Exotoxicol Environ Saf 45: 208-227. https://doi.org/10.1006/eesa.1999.1862
  38. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356. https://doi.org/10.1021/ac60111a017
  39. Del Bigio MR, Yan HJ, Campbell TM, Peeling J. 1999. Effect of fucoidan treatment on collagenase-induced intracerebral hemorrhage in rats. Neurol Res 21: 415-419. https://doi.org/10.1080/01616412.1999.11740953
  40. Brunner G, Reimbold K, Meissauer A, Schirrmacher V, Erkell LJ. 1998. Sulfated glycosaminoglycans enhance tumor cell invasion in vitro by stimulating plasminogen activation. Exp Cell Res 239: 301-310. https://doi.org/10.1006/excr.1997.3877
  41. Mahony MC, Clark GF, Oehninger S, Acosta AA, Hodgen GD. 1993. Fucoidin binding activity and its localization on human spermatozoa. Contraception 48: 277-289. https://doi.org/10.1016/0010-7824(93)90146-X
  42. Hoshino T, Hayashi T, Hayashi K, Hamada J, Lee JB, Sankawa U. 1998. An antivirally active sulfated polysaccharide from Sargassum horneri (TURNER) C. AGARDH. Biol Pharm Bull 21: 730-734. https://doi.org/10.1248/bpb.21.730

Cited by

  1. Effect of Fermented Herbal Mixture against Oxidative Stress in HepG2 and PC12 Cells vol.45, pp.7, 2016, https://doi.org/10.3746/jkfn.2016.45.7.1057
  2. Protective Effects of Zizyphus jujuba and Fermented Zizyphus jujuba from Free Radicals and Hair Loss vol.43, pp.8, 2014, https://doi.org/10.3746/jkfn.2014.43.8.1174
  3. Enhanced anti-inflammatory activity of brown seaweed Laminaria japonica by fermentation using Bacillus subtilis vol.51, pp.12, 2016, https://doi.org/10.1016/j.procbio.2016.08.024
  4. Maturation of mouse bone marrow dendritic cells (BMDCs) induced by Laminaria japonica polysaccharides (LJP) vol.69, 2014, https://doi.org/10.1016/j.ijbiomac.2014.05.018
  5. on Short-Term Working Memory and Physical Fitness in the Elderly vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/8109621
  6. Zerumbone ameliorates high-fat diet-induced adiposity by restoring AMPK-regulated lipogenesis and microRNA-146b/SIRT1-mediated adipogenesis vol.8, pp.23, 2017, https://doi.org/10.18632/oncotarget.16974
  7. Fucoidan Hydrogels Significantly Alleviate Oxidative Stress and Enhance the Endocrine Function of Encapsulated Beta Cells vol.31, pp.35, 2013, https://doi.org/10.1002/adfm.202011205
  8. Seaweed fermentation within the fields of food and natural products vol.116, pp.None, 2013, https://doi.org/10.1016/j.tifs.2021.08.018
  9. Protection against Oxidative Stress-Induced Apoptosis by Fermented Sea Tangle (Laminaria japonica Aresch) in Osteoblastic MC3T3-E1 Cells through Activation of Nrf2 Signaling Pathway vol.10, pp.11, 2021, https://doi.org/10.3390/foods10112807