DOI QR코드

DOI QR Code

Diversity and Antimicrobial Activity of Actinomycetes Isolated from Rhizosphere of Rice (Oryza sativa L.)

벼 근권에서 분리한 방선균의 다양성과 항균 활성

  • Lee, Hye-Won (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Ahn, Jae-Hyung (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Weon, Hang-Yeon (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Song, Jaekyeong (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Kim, Byung-Yong (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA)
  • 이혜원 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 안재형 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 원항연 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 송재경 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 김병용 (농촌진흥청 국립농업과학원 농업미생물과)
  • Received : 2013.11.14
  • Accepted : 2013.12.10
  • Published : 2013.12.31

Abstract

Various microorganisms live in soil, of which those colonizing rhizosphere interact with nearby plants and tend to develop unique microbial communities. In this study, we isolated diverse actinomycetes from rhizosphere of rice (Oryza sativa L.) cultivated in fertilized (APK) and non-fertilized (NF) paddy soils, and investigated the diversity and antimicrobial activity of them. Using four kinds of selective media, 152 isolates were obtained from the soil samples and identified by determining 16S rRNA gene sequence. All of the isolates showed 99.0%~100.0% similarities with type strains and were classified into six genera: Dactylosporangium, Micromonospora, Kitasatospora, Promicromonospora, Streptomyces and Streptosporangium. Most of the isolates, 143 isolates, were classified into the genus Streptomyces. Additionally, many isolates had antimicrobial activity against plant pathogens, especially Magnaporthe oryzae (rice blast pathogen) in fungi. These findings demonstrated that rice rhizosphere can be a rich source of antagonistic actinomycetes producing diverse bioactive compounds.

토양에 서식하는 다양한 미생물 중에서 식물 근권에 서식하는 미생물들은 식물과 상호작용하며 독특한 군집을 형성한다고 알려져 있다. 본 연구에서는 비료 연용 논토양과 무비 논토양에서 재배된 벼(Oryza sativa L.)의 근권으로부터 배양적 접근을 통해 다양한 방선균을 분리하여 항균활성을 조사하였다. 방선균의 선택적 배양을 위해서 4종류의 선택 배지를 이용하였고, 전체 152균주를 분리할 수 있었다. 분리된 균주들의 분류를 위해서 16S rRNA 유전자의 염기서열을 결정하여 표준균주와의 상동성을 비교하였다. 모든 균주들이 기존에 보고된 표준균주들과 99.0~100.0%의 높은 상동성을 나타내었으며, Dactylosporangium, Micromonospora, Kitasatospora, Promicromonospora, Streptomyces, Streptosporangium 등의 6개 속(genus)로 분류되었다. 그 중 Streptomyces 속에 포함되는 균주가 143균주 (94%)로 가장 많았다. 항균활성을 조사한 결과 대다수의 분리 균주들이 식물병원균에 항균성을 나타내는 것을 확인할 수 있었다. 특히 벼 도열병균(Magnaporthe oryzae)에 우수한 항균활성을 보였다. 이와 같은 연구 결과는, 벼의 근권이 다양한 방선균을 분리할 수 있는 우수한 분리원이며, 분리된 방선균에서 다양한 생리활성 물질을 생산할 수 있음을 제시하여 준다. 또한 추후 연구를 통해 친환경 농업을 위한 유용한 미생물 제제로 활용할 수 있을 것으로 기대한다.

Keywords

References

  1. Anzai, K., M. Ohno, T. Nakashima, N. Kuwahara, R. Suzuki, T. Tamura, H. Komaki, S. Miyadoh, S. Harayama and K. Ando (2008) Taxonomic distribution of Streptomyces species capable of producing bioactive compounds among strains preserved at NITE/NBRC. Appl. Microbiol. Biotechnol. 80(2):287-295. https://doi.org/10.1007/s00253-008-1510-6
  2. Brdy, J. (2005) Bioactive microbial metabolites: A personal view. J. Antibiot. (Tokyo). 58(1):1-26. https://doi.org/10.1038/ja.2005.1
  3. Berendsen, R. L., C. M. Pieterse and P. A. Bakker (2012) The rhizosphere microbiome and plant health. Trends Plant Sci. 17(8):478-486. https://doi.org/10.1016/j.tplants.2012.04.001
  4. Berg, G. and K. Smalla (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68(1):1-13.
  5. Bulgarelli, D., M. Rott, K. Schlaeppi, E. V. L. van Themaat, N. Ahmadinejad, F. Assenza, P. Rauf, B. Huettel, R. Reinhardt and E. Schmelzer (2012) Revealing structure and assembly cues for arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91-95. https://doi.org/10.1038/nature11336
  6. Chaparro, J. M., A. M. Sheflin, D. K. Manter and J. M. Vivanco (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fert. Soils 48(5):489-499. https://doi.org/10.1007/s00374-012-0691-4
  7. Dennis, P. G., P. R. Hirsch, S. J. Smith, R. G. Taylor, E. Valsami-Jones and A. J. Miller (2009) Linking rhizoplane pH and bacterial density at the microhabitat scale. J. Microbiol. Methods 76(1):101-104. https://doi.org/10.1016/j.mimet.2008.09.013
  8. El-Tarabily, K. A., G. E. S. J. Hardy and K. Sivasithamparam (2010) Performance of three endophytic actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the united arab emirates. Eur. J. Plant Pathol. 128(4):527-539. https://doi.org/10.1007/s10658-010-9689-7
  9. Farris, M. H., C. Duffy, R. H. Findlay and J. B. Olson (2011) Streptomyces scopuliridis sp. nov., a bacteriocin-producing soil streptomycete. Int. J. Syst. Evol. Microbiol. 61(9):2112-2116. https://doi.org/10.1099/ijs.0.023192-0
  10. Goodfellow, M. (2010) Selective isolation of actinobacteria. In: Manual of industrial microbiology and biotechnology R. H. Baltz, Demain A. L., Davies, J. E., (Ed.). ASM Press, Washington, DC: pp: 13-27.
  11. Hwang, B. K., S. W. Lim, B. S. Kim, J. Y. Lee and S. S. Moon (2001) Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl. Environ. Microbiol. 67(8): 3739-3745. https://doi.org/10.1128/AEM.67.8.3739-3745.2001
  12. Jog, R., G. Nareshkumar and S. Rajkumar (2012) Plant growth promoting potential and soil enzyme production of the most abundant streptomyces spp. from wheat rhizosphere. J. Appl. Microbiol. 113(5):1154-1164. https://doi.org/10.1111/j.1365-2672.2012.05417.x
  13. Kim, M. S., Y. H. Kim, S. S. Kang, H. B. Yun, and B. K. Hyun (2012a) Long-term application effects of fertilizers and amendments on changes of soil organic carbon in paddy soil. Korean J. Soil. Sci. Fert. 45(6):1108-1113. https://doi.org/10.7745/KJSSF.2012.45.6.1108
  14. Kim, O. S., Y. J. Cho, K. Lee, S. H. Yoon, M. Kim, H. Na, S. C. Park, Y. S. Jeon, J. H. Lee, H. Yi, S. Won and J. Chun (2012b) Introducing eztaxon-e: Introducing EzTaxon-e: a prokaryotic 16S rRNA sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62(Pt 3):716-721. https://doi.org/10.1099/ijs.0.038075-0
  15. Kinkel, L. L., D. C. Schlatter, M. G. Bakker and B. E. Arenz (2012) Streptomyces competition and coevolution in relation to plant disease suppression. Res. Microbiol. 163(8):490-499. https://doi.org/10.1016/j.resmic.2012.07.005
  16. Knief, C., N. Delmotte, S. Chaffron, M. Stark, G. Innerebner, R. Wassmann, C. von Mering and J. A. Vorholt (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6(7):1378-1390. https://doi.org/10.1038/ismej.2011.192
  17. Ladygina, N. and K. Hedlund (2010) Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biol. Biochem. 42(2):162-168. https://doi.org/10.1016/j.soilbio.2009.10.009
  18. Lee, G. S., J.-C. Lee, U.-G. Kang, C.-Y. Park and C.-J. Kim (2006) Fluctuation of rhizosphere microflora in paddy rice by long-term fertilization. J. Korean Soc. Appl. Biol. Chem. 49(3):175-179.
  19. Li, S.-M., L. Westrich, J. Schmidt, C. Kuhnt and L. Heide (2002) Methyltransferase genes in Streptomyces rishiriensis: New coumermycin derivatives from gene-inactivation experiments. Microbiology 148(10):3317-3326.
  20. Matsumoto, N., T. Tsuchida, H. Nakamura, R. Sawa, Y. Takahashi, H. Naganawa, H. Iinuma, T. Sawa, T. Takeuchi and M. Shiro (1999) Lactonamycin, a new antimicrobial antibiotic produced by Streptomyces rishiriensis MJ773-88K4. II. Structure determination. J. Antibiot. (Tokyo). 52(3):276. https://doi.org/10.7164/antibiotics.52.276
  21. Morales, D. K., W. Ocampo and M. M. Zambrano (2007) Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure. J. Appl. Microbiol. 103(6):2704-2712. https://doi.org/10.1111/j.1365-2672.2007.03510.x
  22. Prez-Garca, A., D. Romero and A. De Vicente (2011) Plant protection and growth stimulation by microorganisms: Biotechnological applications of bacilli in agriculture. Curr. Opin. Biotechnol. 22(2):187-193. https://doi.org/10.1016/j.copbio.2010.12.003
  23. Ruanpanun, P., N. Tangchitsomkid, K. D. Hyde and S. Lumyong (2010) Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: Screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 26(9):1569-1578. https://doi.org/10.1007/s11274-010-0332-8
  24. Sneath, P. H. A. and R. R. Sokal, 1973. Numerical taxonomy: The principles and practice of numerical classification. San Francisco, C.A.: W.H. Freeman.
  25. Tamura, K., J. Dudley, M. Nei and S. Kumar (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24(8):1596-1599. https://doi.org/10.1093/molbev/msm092
  26. Tatsuoka, S., T. Kusaka, A. Miyake, M. Inoue, H. Hitomi, Y. Shiraishi, H. Iwasaki and M. Imanishi (1957) Studies on antibiotics. Xvi. Isolation and identification of dihydrostreptomycin produced by a new Streptomyces, Streptomyces humidus nov. sp. Pharmaceutical bulletin 5(4):343. https://doi.org/10.1248/cpb1953.5.343
  27. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin and D. G. Higgins (1997) The clustal x windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25(24):4876-4882. https://doi.org/10.1093/nar/25.24.4876
  28. Tian, X., L. Cao, H. Tan, W. Han, M. Chen, Y. Liu and S. Zhou (2007) Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microb. Ecol. 53(4):700-707. https://doi.org/10.1007/s00248-006-9163-4
  29. Yeon, B. Y., H. K. Kwak, Y. S. Song, H. J. Jun, H. J. Cho, and C. H. Kim (2007) Changes in rice yield and soil organic matter content under continued application of rice straw compost for 50 years in paddy soil. Korean J. Soil. Sci. Fert. 40(6):454-459.
  30. Zhang, J., J. Liu, L. Meng, Z. Ma, X. Tang, Y. Cao and L. Sun (2012) Isolation and characterization of plant growthpromoting rhizobacteria from wheat roots by wheat germ agglutinin labeled with fluorescein isothiocyanate. J. Microbiol. 50(2):191-198. https://doi.org/10.1007/s12275-012-1472-3

Cited by

  1. 친환경 잔디관리를 위한 가축분퇴비 중 기능성미생물의 분리 및 선발 vol.6, pp.2, 2013, https://doi.org/10.5660/wts.2017.6.2.157
  2. Identification and biological characterization of a new pathogen that causes potato scab in Gansu Province, China vol.161, pp.no.pa, 2013, https://doi.org/10.1016/j.micpath.2021.105276