DOI QR코드

DOI QR Code

Cleveland 개방식 장치를 이용한 Acetic acid+Formic acid 계의 인화점 측정과 예측

Measurement and Prediction of Flash Points of Acetic Acid-Formic Acid System using Cleveland Open Cup Apparatus

  • 하동명 (세명대학교 보건안전공학과) ;
  • 이성진 (세명대학교 임상병리학과)
  • Ha, Dong-Myeong (Dept. of Occupational Health and Safety Engineering, Semyung University) ;
  • Lee, Sungjin (Dept. of Clinical Laboratory Science, Semyung University)
  • 투고 : 2013.09.03
  • 심사 : 2013.12.26
  • 발행 : 2013.12.31

초록

인화점은 공기와 섞인 가연성 증기의 농도가 발화하기에 충분할 때의 최저 온도로, 가연성 액체 용액의 화재 및 폭발 위험성을 분석하는데 사용되는 주된 물리적 특성치이다. 단일 성분의 인화점 정보는 여러 문헌에서 얻을 수 있으나, 가연성 이성분계 혼합물의 인화점은 충분히 제공되어 있지 않다. 본 연구의 목적은 이성분계 가연성 액체 혼합물인 아세트산-포름산계의 인화점을 측정하고, 산출하는 것이다. 인화점 측정은 Cleveland 개방식 장치를 사용하였고, 실험값은 van Laar 식과 Wilson 식을 활용한 최적화 기법에 의해 산출된 값과 비교하였다. 그리고 라울의 법칙에 의해 산출된 값과 비교되었다. 그 결과, 최적화 기법에 의한 산출값이 Rauolt의 법칙에 의한 산출값보다 실험값에 보다 근접하였다.

The flash point is the lowest temperature at which there is enough concentration of flammable vapor to form an ignitable mixture with air. The flash point is a major physical property used to analyse the fire and explosion hazards of a flammable liquid solution. The flash point data for pure components are easily available in several literature. But the flash points of the flammable binary solutions appear to be scarce in the literature. The objective of this study is to measure and estimate the flash point of acetic acid-formic acid system. Cleveland open cup tester was used to measure the flash point. The experimental data were compared with the values estimated by the Raoult's law and the optimization methods based on van Laar and Wilson equations. As a result, the estmated values by optimization methods were found to be better than those based on the Raoult's law.

키워드

참고문헌

  1. Kong, D., am Ende, D.J., Brenek, S.J., and Weston, N.P., "Determination of flash point in air and pure oxygen using an equilibrium closed bomb apparatus", J. of Hazardous Materials, A102, 155-165, (2003)
  2. Moghadam, A.Z., Rafiei, A., and Khalili, T., "Assessing Prediction Models on Calculating the Flash Point of Organic Acid, Ketone and Alcohol Mixtures", Fluid Phase Equilibria, 316, 117-121, (2012) https://doi.org/10.1016/j.fluid.2011.12.014
  3. Khalili, T. and Moghadam, A.Z., "Measurement and calculation of flash point of binary aqueous- organic and organic-organic solutions", Fluid Phase Equilibria, 312, 101-105, (2011) https://doi.org/10.1016/j.fluid.2011.09.003
  4. Noorollahy, M., Moghadam, A.Z., and Ghasrodashti, A.A., "Calculation of mixture equilibrium binary interaction parameters using closed cup flash point measurements", Chemical Engineering Research and Design, 88, 81-86, (2012)
  5. Walsham, J.G., "Prediction of flash points for solvent mixtures", In. : Advances in Chemistry Series, Publ. 73, Ser.123, Washington, DC : American Chemical Society, 56-69, (1973)
  6. Affens, W.A. and Mclaren, G.W., "Flammability Properties of Hydrocarbon Solutions in Air", J. of Chem. & Eng. Data, 17(4), 482-488, (1972) https://doi.org/10.1021/je60055a040
  7. Thorne, P.F., "Flash point of mixtures of flammable and non-flammable liquids", Fire and Materials, 17(4), 482-488, (1972)
  8. Reid, C.R., Prausnitz, J.M., and Poling, B.E., The Properties of Gases and Liquids, 4th Edition., McGraw-Hill, New York, (1998)
  9. Gmehling, J. and Rasmussen, P., "Flash points of flammable liquid mixtures using UNIFAC", Ind. Eng. Chem. Fundam., 2, 186.-188, (1982)
  10. White, D., Beyler, C.L., Fulper, C., and Leonard, J., "Flame spread on aviation fuels", Fire Safety Journal, 28, 1-31, (1997) https://doi.org/10.1016/S0379-7112(96)00070-7
  11. Ha, D.M. and Kim, M.G., "Prediction of Flash Point for the Flammable Ternary System", J. of the Korean Institute of Chemical Engineers, 12(3), 76-82, (1997)
  12. Liaw, H.J., Chen, C.T., Cheng, C.C., and Yang, Y.T., "A mathematical model for predicting the flash point of binary solution", J. of Loss Prevention in the Process Industries, 15, 429-438, (2002) https://doi.org/10.1016/S0950-4230(02)00068-2
  13. Vidal, M., Rogers, J., and Mannan, M.S., "Prediction of minimum flash point behaviour for binary mixtures", Process Safety and Environmental Protection, 84(B1), 1-9, (2006) https://doi.org/10.1205/psep.05041
  14. Kim, S.Y. and Lee, B., "A prediction model for the flash point of binary liquid mixtures", J. of Loss Prevention in the Process Industries, 23, 166-169, (2010) https://doi.org/10.1016/j.jlp.2009.07.008
  15. American Society for Testing Materials (ASTM) D 92, Standard test method for flash and fire points by Cleveland open cup tester, West Conshohocken, ASTM international, (2002)
  16. Le Chatelier, "Esimation of Firedamp by Flammability limits", Ann. Minmes, 19, 388-392, (1891)
  17. Liaw, H.J., Tang, C.L., and Lai, J.S., "A Model for Predicting the Flash Point of Ternary Flammable Solutions of Liquid", Combust Flame, 138, 308-319, (2004) https://doi.org/10.1016/j.combustflame.2004.06.002
  18. Gmehing, J., Onken, U., and Arlt, W., Vapor-Liquid Equilibrium Data Collection, 1, Part1-Part7, DECHEMA, (1980)
  19. Kuester J.L. and J.H. Mize, Optimization Techniques with Fortran, McGraw-Hill, New York, (1973)
  20. Lee, C.J., Ko, J.W., and Lee, G., "Flash point prediction of organic compounds using a group contribution and support vector machine", Korea J. Chem. Eng., 29, 145-153, (2012) https://doi.org/10.1007/s11814-011-0164-8