DOI QR코드

DOI QR Code

초음파 및 마이크로공기부양법을 이용한 양식장 퇴적물 제거 특성

Removal of Sediments below Breeding Ground Using Supersonics and Micro-Air Flotation

  • 김석구 (한국건설기술연구원 환경연구실) ;
  • 안재환 (한국건설기술연구원 환경연구실) ;
  • 윤상린 (한국건설기술연구원 환경연구실) ;
  • 강성원 (한국건설기술연구원 환경연구실) ;
  • 이정우 (한국건설기술연구원 환경연구실) ;
  • 이제근 (국립부경대학교 환경공학과) ;
  • 임준혁 (국립부경대학교 화학공학과) ;
  • 김동수 (국립부경대학교 환경공학과) ;
  • 이태윤 (국립부경대학교 환경공학과)
  • Kim, Seog-Ku (Environmental Engineering Research Disision, Korea Institute of Construction Technology) ;
  • Ahn, Jae-Hwan (Environmental Engineering Research Disision, Korea Institute of Construction Technology) ;
  • Yun, Sang-Leen (Environmental Engineering Research Disision, Korea Institute of Construction Technology) ;
  • Kang, Sung-Won (Environmental Engineering Research Disision, Korea Institute of Construction Technology) ;
  • Lee, Jungwoo (Environmental Engineering Research Disision, Korea Institute of Construction Technology) ;
  • Lee, Jea-Keun (Department of Environmental Engineering, Pukyong National University) ;
  • Lim, Jun-Heok (Department of Chemical Engineering, Pukyong National University) ;
  • Kim, Dong-Soo (Department of Environmental Engineering, Pukyong National University) ;
  • Lee, Tae-Yoon (Department of Environmental Engineering, Pukyong National University)
  • 투고 : 2013.10.07
  • 심사 : 2013.10.25
  • 발행 : 2013.10.30

초록

본 연구는 양식장 퇴적토의 효과적 제거를 위해 초음파와 마이크로 공기를 이용한 퇴적토 부상제거를 위한 연구이다. 통영지역 양식장 퇴적토는 중금속 오염은 없으나 많은 양의 유기물을 함유한 것으로 파악되었고 수질보전을 위해 이들 퇴적토의 효과적 제거가 필요한 실정이다. 실험실 규모의 실험에서 초음파를 사용하지 않은 경우는 마이크로 공기를 주입하더라도 제거율은 초음파를 사용한 경우보다 현격히 낮아 초음파 사용이 필요함을 알 수 있었다. 또한, 마이크로 공기 주입시 응집제의 사용은 퇴적토 입자의 크기를 증가시켜 마이크로 공기에 의한 부상을 용이하게 하여 제거율이 크게 향상되었다. 퇴적토 양에 따른 부상제거 실험에서는 퇴적토 양이 증가함에 따라 제거율이 95.8% (1 g/L)에서 83.9% (8 g/L)로 감소하였으나, 대부분의 미세입자는 마이크로 공기에 의해 부상처리되어 제거되었음을 알 수 있었다.

The purpose of this study was to remove sediments obtained from breeding ground using supersonics and micro-air flotation method. Sediments from Tongyong breeding grounds showed no contaminations of heavy metals but had great amount of organics. Thus, efficient removal of sediments was required to preserve water quality near breeding ground. Supersonics treatment for sediments was determined to be essential because higher removal efficiency of sediments was obtained when supersonics treatment was used. In addition, application of coagulants increased removal efficiency because its usage increased particle size of sediments, which enabled easy trapping of sediments particle into micro-air bubbles. Removal efficiency of sediments slightly decreased from 95.8% (1 g/L) to 83.9% (8 g/L) at the tests for different amount of sediments, but most of tiny particles were removed from water where sand size particles were left in the bottom of reactors.

키워드

참고문헌

  1. Yang, H. S. and Kim, S. S., "Pollution of Heavy Metals and Sedimentation Rate in the Sediments of Suyeong Bay, Pusan," Bullet. Kor. Fish. Soc., 27(5), 643-658(1994).
  2. Cho, E. I., Lee, S. M. and Park, C. K., "The Characteristics and the Effects of Pollutant Loadings from Nonpoint Sources on Water Quality in Suyeong Bay," J. Kor. Fish. Soc., 28(3), 279-293(1995).
  3. Choi, B. R. and Lee, T. Y., "Evaluation of Organic Compounds and Heavy Metals in Sediments from the Busan Harbor," Korean J. Waste Manage., 28(3), 269-274(2011).
  4. Lee, T. Y., "Evaluation of Contamination Levels of Sediments Obtained from the Southern Busan Harbor," Korean J. Waste Manage., 30(2), 119-123(2013). https://doi.org/10.9786/kswm.2013.30.2.119
  5. Heggberget, T. G., Johnson, B. O., Hinder, K., Jonsson, B., Hansen, L. P. and Jensen, A. J., "Interaction between wild and cultured Atlantic Salmon, a review of the Norwegian experience," Fish. Res., 18, 123-146(1993). https://doi.org/10.1016/0165-7836(93)90044-8
  6. Hirata, H., Kadowaki, S. and Ishida, S., "Evaluation of water quality by observation of dissolved oxygen content in mariculture farms," Bullet. Natl. Res. Inst. Aquacult., 1, 61-65(1994).
  7. Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N. and Troell, M., "Effect of aquaculture on world fish supplies," Nature, 405, 1017-1024(2000). https://doi.org/10.1038/35016500
  8. Yongson, A. E., Dosdat, A., Saroglia, M. and Jordan, W. C., "Genetic interactions between marine fish species in European aquaculture and wild conspecies," J. Appl. Ichthyol., 17, 153-162(2001). https://doi.org/10.1046/j.1439-0426.2001.00312.x
  9. Shim, J. H., Kang, Y. C. and Choi, J. W., "Chemical fluxes between seawater surfaces and sediments at Tongyong breeding ground," J. Kor. Fish. Soc., 30(3), 151-159(1997).
  10. Agarwal, A., Ng, W. J. and Liu, Y., "Principle and applications of microbubble and nanobubble technology for water treatment," Chemosphere, 84(8), 1175-1180(2011). https://doi.org/10.1016/j.chemosphere.2011.05.054
  11. Takahashi, M., "$\zeta$ potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface," J. Physic. Chem. B, 109(11), 21858-21864(2005). https://doi.org/10.1021/jp0445270
  12. Takahashi, M., Chiba, K. and Li. P., "Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus," J. Physic. Chem. B, 111(8), 1343-1347(2007). https://doi.org/10.1021/jp0669254
  13. Chu, L. B., Xing, X. H., Yu, A. F., Zhou, Y. N., Sun, X. L. and Jurcik, B., "Enhanced ozonation of simulated dyestuff wastewater by microbubbles," Chemosphere, 68(12), 1854- 1860(2007). https://doi.org/10.1016/j.chemosphere.2007.03.014
  14. Chu, L. B., Xing, X. H., Yu, A. F., Sun, X. L. and Jurcik, B., "Enhanced treatment of practical textile wastewater by microbubble ozonation," Proc. Safety Environ. Protection, 86 (2), 389-393(2008a). https://doi.org/10.1016/j.psep.2008.02.005
  15. Chu, L. B., Yan, S. T., Xing, X. H., Yu, A. F., Sun, X. L. and Jurcik, B., "Enhanced sludge solubilization by microbubble ozonation," Chemosphere, 72(3), 205-212(2008b). https://doi.org/10.1016/j.chemosphere.2008.01.054