DOI QR코드

DOI QR Code

Set up Reduction Goals of Combined Sewer Overflow Pollutant Load Using Long-Term Rainfall-Runoff Model Simulation

장기간 강우-유출 모의를 통한 합류식하수관로시스템의 월류부하량 저감목표 설정 연구

  • Lee, Gunyoung (Department of Civil and Environmental Engineering and Urban Design and Studies, Chung-Ang University) ;
  • Na, Yongun (The Office of Waterworks Seoul Metropolitan Government) ;
  • Ryu, Jaena (Department of Civil and Environmental Engineering and Urban Design and Studies, Chung-Ang University) ;
  • Oh, Jeill (Department of Civil and Environmental Engineering and Urban Design and Studies, Chung-Ang University)
  • 이건영 (중앙대학교 사회기반시스템공학부) ;
  • 나용운 (서울시 상수도연구원) ;
  • 류재나 (중앙대학교 사회기반시스템공학부) ;
  • 오재일 (중앙대학교 사회기반시스템공학부)
  • Received : 2013.04.08
  • Accepted : 2013.11.06
  • Published : 2013.11.30

Abstract

Combined sewer overflows during rainfall events contain sewer sediments and surface pollutants. This can cause significant chemical, physical and biological problems to receiving watershed. However, there are no method that can commonly apply to decide criteria for controlling the pollutant load. In this study, it sets up the reduction goals of combined sewer overflow through long-term simulation using the rainfall-runoff model. From a review of domestic and foreign management standard of combined sewer overflow for this, it makes decision that 60% (phase 1), 85% (phase 2) of total pollutant load and frequency per year for reduction goals is more proper. Also, the result of analyzing long-term simulation (minimum 10 years) applied to research basin indicates that reduction goals of BOD pollutant load are 1,123 kg (phase 1) and 2,374 kg (phase 2), and overflow volumes for research objective achievement are $11,685m^3$ (phase 1) and $24,701m^3$ (phase 2).

합류식하수관로시스템에서 강우시 유출수는 관로내 퇴적물과 지표면 세척효과에 의한 오염물질 등이 혼합되어 하천으로 방류되기 때문에 방류수계에 화학적 물리적 생물학적으로 상당한 문제를 야기하지만, 현재 국내에서는 CSOs의 오염 부하량 관리기준을 결정함에 있어 통일된 방법론이 부재한 실정이다. 이에 따라 본 연구에서는 우수유출모형을 활용한 장기간 CSOs 유량-수질모의를 통하여 CSOs의 오염부하량 저감목표를 설정하고자 한다. 이를 위하여 국내외 CSOs 관리기준을 검토하였으며, 그 결과 연간 총 월류부하량 및 발생빈도를 총 2단계로 구분하여 관리하고, 1단계에서는 60%, 2단계에서는 85%를 저감하는 것을 목표로 설정하였다. 도출된 저감 목표 기준을 대상지역에 적용하여 장기간(최소 10년간)의 CSOs 발생 모의를 바탕으로 분석한 결과, BOD 월류부하량 저감목표는 1단계 1,123 kg, 2단계 2,374 kg이었으며, 목표 달성을 위해 대응해야 할월류량은 1단계 $11,685m^3$, 2단계 $24,701m^3$으로 나타났다.

Keywords

References

  1. US Environmental Protection Agency, "Clean water action plan: Restoring and protecting America's water," (1998).
  2. Richard, F. and Daniel, S., "Overview of EPA's wet-weather flow research program," Urban Water, 3, 165-169(2001). https://doi.org/10.1016/S1462-0758(01)00041-3
  3. Yor, J. H. and Kim, G. H., "Discharge characteristics of sewer overflows from small urban watersheds," J. Kor. Soc. Civil Eng., 25(1B), 75-82(2005).
  4. Lee, J. K., Bang, K. W. and Lee, J. H., "A study on runoff characteristics of pollutants in combined sewer overflow," J. Kor. Soc. Environ. Eng., 18(10), 1147-1160(1996).
  5. James, L., David, B. and Manfred, S., "Is combined sewer overflow spill frequency/volume a good indicator of receiving water quality impact?," Urban Water, 4, 181-189(2002). https://doi.org/10.1016/S1462-0758(02)00013-4
  6. Korea Ministry of Environment, "Study on performance improvement of combined sewer," (2010).
  7. Korea Ministry of Environment, "Sewage facility standards," (2011).
  8. Korea Ministry of Environment, "Enforcement rules of water quality and ecosystem conservation," (2012).
  9. Korea Environment Corporation, "Feasibility study for selection the demonstration area installed underground storage facilities,"(2005).
  10. The Seoul Institute, "Study on first flush treatment plan in Seoul," (2005).
  11. Korea Ministry of Environment, "Feasibility study on installing reduction facilities of combined sewer overflows pollution load," (2007).
  12. Korea Environment Corporation, "Comprehensive plan and feasibility study on CSO treatment facility in Saemangeum area," (2010).
  13. US Environmental Protection Agency, "Combined sewer overflows guidance for nine minimum controls," (1995).
  14. US Environmental Protection Agency, "Combined sewer overflows guidance for long-term control plan," (1995).
  15. US Environmental Protection Agency, "Combined sewer overflow control policy," (1994).
  16. US Environmental Protection Agency, "NPDES watershed strategy," (1994).
  17. JSWA, "Combined sewer improvement guidance and explanation,"(2002).
  18. JSWA, "Enforcement decree of the wastewater service act (2004.4)," (2004).
  19. FWR, "Urban pollution management manual, Foundation for Water Research," FR/CL0002(1998).
  20. BWKM3, "Sewage facility standards," (1999).
  21. Lee, G. Y., Na, Y. G., Ryu, J. N. and Oh, J. I., "Criteria for calculation of CSO volume and frequency using rainfall-runoff model," J. Kor. Soc. Water Wastewater, 27(3), 313-324(2013). https://doi.org/10.11001/jksww.2013.27.3.313
  22. Ashey, R. M., Krajewski, B., Jacobsen, T. H. and Verbanck, M., "Solids in sewers," IWA(2004).
  23. Park, Y. H. and Park, S. S., "Development of non-point source pollution loading function based on rainfall intensity and land use type," J. Kor. Soc. Environ. Eng., 26(10), 1070-1078 (2004).
  24. US Environmental Protection Agency, "Application guide for hydrological simulation program-FORTRAN (HSPF)," (1984).
  25. US Environmental Protection Agency, "Application guide for hydrological simulation program-FORTRAN (HSPF)," (1984).