DOI QR코드

DOI QR Code

Isoflavones and biotransformed dihydrodaidzein production with in vitro cultured callus of Korean wild arrowroot Pueraria lobata

한국산 야생칡 캘러스에서의 이소플라본 및 생물전환에 의한 디하이드로다이드제인 분석

  • Lee, Eunji (Department of Horticulture and Institute of Life and Environment, Daegu University) ;
  • Kwon, Jung Eun (Department of Life Science, Gachon University) ;
  • Kim, Soojung (Department of Horticulture and Institute of Life and Environment, Daegu University) ;
  • Cha, Min-Seok (Department of Horticulture and Institute of Life and Environment, Daegu University) ;
  • Kim, Inhye (Functional Food & Nutrition Division, National Academy of Agricultural Science, RDA) ;
  • Kang, Se Chan (Department of Life Science, Gachon University) ;
  • Park, Tae-Ho (Department of Horticulture and Institute of Life and Environment, Daegu University)
  • 이은지 (대구대학교 원예학과, 대구대학교 생명환경연구소) ;
  • 권정은 (가천대학교 생명과학과) ;
  • 김수정 (대구대학교 원예학과, 대구대학교 생명환경연구소) ;
  • 차민석 (대구대학교 원예학과, 대구대학교 생명환경연구소) ;
  • 김인혜 (농촌진흥청 국립농업과학원) ;
  • 강세찬 (가천대학교 생명과학과) ;
  • 박태호 (대구대학교 원예학과, 대구대학교 생명환경연구소)
  • Received : 2013.12.16
  • Accepted : 2013.12.23
  • Published : 2013.12.31

Abstract

Pueraria lobata, a medicinally important leguminous plant produces various isoflavones including puerarin, daidzin and daidzein which are metabolized to equol via dihydrodaidzein and tetrahydrodaidzein by the bacterial fermentation of natural isoflavone sources in human intestines. In this study, we described callus proliferation and isoflavone production in callus of Korean wild arrowroot and dihydrodaidzein biosynthesis in callus extract fermented with Pediococcus pentosaceus. Proliferation was the best at callus cultured in the medium containing 1.0 mg/L TDZ and 1.0 mg/L NAA at light condition for 12 days. Puerarin was significantly more produced at callus cultured in the medium containing 2.0 mg/L kinetin and 1.0 mg/L NAA at dark condition for 16 days, but daidzin and daidzein were not significant. Callus extract was successfully fermented with P. pentosaceus and dihydrodaidzein, which is one of equol precursors formed by biotransformation, was confirmed to be produced. These results will facilitate mass production of callus and isoflavones as equol precursors from Korean wild arrowroot and can be applied for the production of equol by biotransformation in vitro.

국내 자생하는 야생칡(Pueraria lobata)은 푸에라린, 다이드진, 다이드제인 등 다양한 이소플라본을 함유하고 있는 주요한 콩과 약용작물이다. 이들 이소플라본은 장내에서 특정 세균과 반응으로 생물전환이 일어나 디하이드로다이드제인, 테트라하이드로다이드제인을 거쳐 약리작용이 타 이소플라본 보다 월등한 이퀄로 물질대사가 이루어지는 것으로 알려져 있다. 본 연구에서는 국내 야생칡으로부터 유도된 캘러스를 이용하여 배양배지, 배양조건 및 배양기간에 따른 캘러스의 증식과 이소플라본의 합성 정도를 구명하고 배양된 캘러스 추출물을 생물전환 능력이 있는 것으로 밝혀진 Pediococcus pentosaceus 균주와의 반응을 통하여 이퀄 전구체인 디하이드로다이드제인의 생합성을 구명하고자 수행되었다. 캘러스의 증식은 광조건에서 1.0 mg/L TDZ과 1.0 mg/L NAA가 첨가된 배지에서 12일 배양했을 때 가장 좋다. 푸에라린 함량은 암조건에서 2.0 mg/L kinetin과 1.0 mg/L NAA가 첨가된 배지에서 16일 배양했을 때 가장 높게 나타났으나, 다이드진과 다이드제인 함량은 처리에 따른 유의한 차이가 나타나지 않았다. 캘러스 추출물을 P. pentosaceus 균주와 반응하여 발효시켰을 때 생물전환에 의해 이퀄의 전구체인 디하이드로다이드제인이 성공적으로 생합성되는 것이 확인되었다. 본 연구의 결과는 국내 야생칡을 대상으로 캘러스의 대량증식을 통한 이퀄의 전구물질인 이소플라본의 대량생산에 기여할 수 있으며, 기내에서 생물전환을 통하여 이퀄을 생산하기 위한 기반이 될 것이다.

Keywords

References

  1. Arai Y, Uehara M, Sato Y, Kimira M, Eboshida A, Adlercreutz H, Watanabe S (2000) Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. J Epidemiol 10:127-135 https://doi.org/10.2188/jea.10.127
  2. Barnes S (1998) Evolution of the health benefits of soy isoflavones. Proc Soc Exp Biol Med 217:386-392 https://doi.org/10.3181/00379727-217-44249
  3. Boonsnongcheep P, Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanthurarug S (2010) Growth and isoflavonoid accumulation of Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tiss Cult 101:119-126 https://doi.org/10.1007/s11240-010-9668-x
  4. Cassidy A (1996) Physiological effects of phyto-oestrogens in relation to cancer and other human health risks. Proc Nutr Soc 55:399-417 https://doi.org/10.1079/PNS19960038
  5. Chansakaow S, Ishikawa T, Sekine K, Okada M, Higushi Y, Kudo M, Chaichantipyuth C (2000) Isoflavonoids from Pueraria mirifica and their estrogenic activity. Planta Med 66:572-574 https://doi.org/10.1055/s-2000-8603
  6. Cherdshewasart W, Subtang S, Dahlan W (2007) Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. J Pham Biomed Anal 43:428-434 https://doi.org/10.1016/j.jpba.2006.07.013
  7. Goyal S, Ramawat KG (2007) Effect of chemical factors on production of isoflavonoids in Pueraria tuberose (Roxb.ex.Willd.) DC suspension culture. Indian J Exp Biol 45:1063-1067
  8. Goyal S, Ramawat KG (2008) Synergistic effect of morphactin on cytokinin-induced production of isoflavonoids in cell culture of Pueraria tuberose (Roxb.ex.Willd) DC. Plant Growth Regul 55:175-181 https://doi.org/10.1007/s10725-008-9271-x
  9. Jin JS, Nishihata T, Kakiuchi N, Hattori M (2008) Biotransformation of C-Glucosylisoflavone puerarin to estrogenic (3S)-equol in co-culture of two human intestinal bacteria. Biol Pharm Bull 31:1621-1625 https://doi.org/10.1248/bpb.31.1621
  10. Kaufman PB, Duke JA, Brielmann H, Boik J, Hoyt JE (1997) A comparison survey of leguminous plants as sources of the isoflavones, genistein and daidzein: implications for human nutrition and health. J Altern Complement Med 3:7-12 https://doi.org/10.1089/acm.1997.3.7
  11. Kim SJ, Park C, Kim HG, Shin WC, Choe SY (2004) A study on the estrogenicity of Korean arrowroot (Pueraria thunbergiane). J Korean Soc Food Sci Nutr 33: 16-21 https://doi.org/10.3746/jkfn.2004.33.1.016
  12. Kim S, Cha MS, Lee E, Kim I, Kwon JE, Kang SC, Park TH (2012) In vitro induction of hairy root from isoflaonves-producing Korean wild arrowroot Pueraria lobata. J Plant Biotechnol 39:205-211 https://doi.org/10.5010/JPB.2012.39.3.205
  13. Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanturarug S (2010) Effects of abiotic and biotic elicitors on growth and isoflvonoid accumulation in Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tiss Organ Cult 103:333-342 https://doi.org/10.1007/s11240-010-9785-6
  14. Minamida K, Tanaka M, Abe A, Sone T, Tomita F, Hara H, Asano K (2006) Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine. J Biosci Bioeng 102:247-250 https://doi.org/10.1263/jbb.102.247
  15. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473-479 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  16. Park EK, Shin JS, Bae EA, Lee YC, Kim DH (2006) Intestinal bacteria activate estrogenic effect of main constituents puerarin and daidzin of Pueraria thunbergiana. Biol Pharm Bull 29:2432-2435 https://doi.org/10.1248/bpb.29.2432
  17. Prasain JK, Reppert A, Jones K, Moore DR, Barnes S, Lila MA (2007) Identification of isoflavone glycosides in Pueraria lobata cultures by tandem mass spectrometry. Phytochem Anal 18:50-59 https://doi.org/10.1002/pca.951
  18. Reppert A, Yousef GG, Rogers RB, Lila MA (2008) Isolation of radiolabeled isoflavones from Kudzu (Pueraria lobata) root cultures. J Agric Food Chem 56:7860-7865 https://doi.org/10.1021/jf801413z
  19. Setchell KDR (1998) Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 68:1333S-1346S
  20. Setchell KDR, Brown NM, Lydeking-Olsen E (2002) The clinical importance of the metabolite equol - A clue to the effectiveness of soy and its isoflavones. J Nutr 132:3577-3584
  21. Setchell KDR, Brown NM, Summer S, King EC, Heubi JE, Cole S, Guy T, Hokin B (2013) Dietary factors influence production of the soy isoflavone metabolite S-(-)equol in healthy adults. J Nutr 143:1950-1958 https://doi.org/10.3945/jn.113.179564
  22. Sharma V, Goyal S, Ramawat KG (2009) Scale up production of isoflavonoids in cell suspension cultures of Pueraria tuberosa grown in shake flasks and bioreactor. Eng Life Sci 9:267-271 https://doi.org/10.1002/elsc.200800114
  23. Shimada Y, Yasuda S, Takahashi M, Hayashi T, Miyazawa N, Sata I, Abiru Y, Uchiyama S, Hishigaki H (2010) Cloning and expression of a novel NADP(H)-dependent daidzein reductase, an enzyme involved in the metabolism of daidzein, from equol-producing Lactococcus strain 20-92. Appl Environ Microb 76:5892-5901 https://doi.org/10.1128/AEM.01101-10
  24. Tsuji H, Moriyama K, Nomoto K, Akaza H (2012) Identification of an enzyme system for daidzein-to-equol conversion in Slakia sp. Strain NATTS. Appl Environ Microb 78:1228-1236 https://doi.org/10.1128/AEM.06779-11
  25. Udomsuk L, Jarukamjorn K, Tanaka H, Putalun W (2011) Improved isoflavonoid production in Pueraria candollei hairy root cultures using elicitation. Biotechnol Lett 33:369-374 https://doi.org/10.1007/s10529-010-0417-3
  26. Vaishnav K, Goyal S, Ramawat KG (2006) Isoflavonoids production in callus culture of Pueraria tuberosa, the Indian Kudzu. Indian J Exp Biol 44:1012-1017
  27. Yu ZT, Yao W, Zhu WY (2008) Isolation and identification of equol-producing bacterial strains from cultures of pig faeces. FEMS Microbiol Lett 282:73-80 https://doi.org/10.1111/j.1574-6968.2008.01108.x
  28. Yuk CS (1989) Colored medicinal plants of Korea. Academy book. Seoul. p301

Cited by

  1. Isoflavones and biotransformed dihydrodaidzein in hairy roots of Korean wild arrowroot vol.43, pp.1, 2016, https://doi.org/10.5010/JPB.2016.43.1.125