DOI QR코드

DOI QR Code

협력적 스펙트럼 공유의 자동 반복 프로토콜

An Automatic Repeating Protocol in Cooperative Spectrum Sharing

  • 공형윤 (울산대학교 전기전자정보시스템공학부)
  • 투고 : 2013.09.23
  • 심사 : 2013.12.13
  • 발행 : 2013.12.31

초록

본 논문에서는, NACK 메시지가 스펙트럼 공유와 협력을 위한 명령으로 사용되어지는 방법을 제안하였다. 1차 사용자의 직접 연결이 중단될 때, 협력과 공유의 자동 반복을 허가하고, 패러다임 기반의 협력 스펙트럼 공유의 조정 메시지의 수를 절약하기 위해 허가한다. 공유 시, ${\alpha}$의 남은 전력 부분이 1차 재전송 신호인 동안, 2차 전송된 신호를 위한 $1-{\alpha}$ 전력 부분은 중계기 공유로 선택된다. 중계기를 사용하지 않는 경우, 1차 송신단은 전체 전력($1-{\alpha}$)를 사용하여 신호를 재전송 하기 위해 NACK를 사용한다. 두 시스템은 BPSK 신호를 적용한 것으로 가정한다. 이 기법에서, 2차 사용자는 공동 최적화 복호를 하는 것으로 제안한다. 프레임 오류율(FER) 성능은 양 시스템에서 분석된다. 이론과 시뮬레이션 결과는 본 프로토콜의 유효성을 분석하고 효율적임을 확인하였다.

In this paper, we propose a method in which the negative acknowledge (NACK) message is used as command for cooperation and spectrum sharing. This allows for an automatic request for cooperation and sharing when the direct link of the primary user is in outage, and also allows for saving the number of control messages in cooperation-spectrum sharing based paradigm. In the sharing phase, the selected relay shares a power fraction of $1-{\alpha}$ for secondary transmitted signal while the remaining of ${\alpha}$ is for primary retransmitted signal. In the case of no relay collected, primary transmitter uses NACK as a command to retransmit the signal with fully power fraction (${\alpha}=1$). Both systems are assumed to employ BPSK signals. In this scheme, we propose the joint optimal decoding in the secondary user. The frame error rate (FER) performance at both systems is then analyzed. The theoretical and simulation results validate the analysis and confirm the efficiency of the protocol.

키워드

참고문헌

  1. N. T. a. I. A. (NTIA). FCC Frequency Allocation Chart [Online]. Available: http://www.ntia.doc.gov/smhome/allochrt.pdf
  2. D. A. Roberson, et al., "Spectral Occupancy and Interference Studies in support of Cognitive Radio Technology Deployment," in Networking Technologies for Software Defined Radio Networks, 2006. SDR '06.1st IEEE Workshop on, 2006, pp. 26-35.
  3. S. Haykin, "Cognitive radio: brain-empowered wireless communications," Selected Areas in Communications, IEEE Journal on, vol. 23, pp. 201-220, 2005. https://doi.org/10.1109/JSAC.2004.839380
  4. O. lleri and N. B. Mandayam, "Dynamic spectrum access models: toward an engineering perspective in the spectrum debate," Communications Magazine, IEEE, vol. 46, pp. 153-160, 2008. https://doi.org/10.1109/MCOM.2008.4427243
  5. D. Cabric, et al., "Spectrum sharing radios," Circuits and Systems Magazine, IEEE, vol. 6, pp. 30-45, 2006. https://doi.org/10.1109/MCAS.2006.1648988
  6. A. Goldsmith, et al., "Breaking Spectrum Gridlock With Cognitive Radios: An Information Theoretic Perspective," Proceedings of the IEEE, vol. 97, pp. 894-914, 2009. https://doi.org/10.1109/JPROC.2009.2015717
  7. S. Srinivasa and S. A. Jafar, "COGNITIVE RADIOS FOR DYNAMIC SPECTRUM ACCESS - The Throughput Potential of Cognitive Radio: A Theoretical Perspective," Communications Magazine, IEEE, vol. 45, pp. 73-79, 2007. https://doi.org/10.1109/MCOM.2007.358852
  8. A. Jovicic and P. Viswanath, "Cognitive Radio: An Information-Theoretic Perspective," Information Theory, IEEE Transactions on, vol. 55, pp. 3945-3958, 2009. https://doi.org/10.1109/TIT.2009.2025539
  9. O. Simeone, et al., "Spectrum Leasing to Cooperating Secondary Ad Hoc Networks," Selected Areas in Communications, IEEE Journal on, vol. 26, pp. 203-213, 2008. https://doi.org/10.1109/JSAC.2008.080118
  10. Y. Han, et al., "Cooperative spectrum sharing via controlled amplify-and-forward relaying," in Personal, Indoor and Mobile Radio Communications, 2008. 15PIMRC 2008. IEEE 19th International Symposium on, 2008, pp. 1-5.
  11. H. Yang, et al., "Cooperative decode-and-forward relaying for secondary spectrum access," Wireless Communications, IEEE Transactions on, vol. 8, pp. 4945-4950, 2009. https://doi.org/10.1109/TWC.2009.081484
  12. H. Yang, et al., "Cooperative Spectrum Sharing Protocol with Secondary User Selection," Wireless Communications, IEEE Transactions on, vol. 9, pp. 2914-2923.
  13. A. Bletsas, et al., "A Simple Cooperative Diversity Method Based on Network Path Selection," IEEE Journal on Select Areas in Communications, vol. 24, pp. 659-672, March 2006. https://doi.org/10.1109/JSAC.2005.862417
  14. E. Malkamaki and H. Leib, "Evaluating the performance of convolutional codes over block fading channels," Information Theory, IEEE Transactions on, vol. 45, pp. 1643-1646, 1999. https://doi.org/10.1109/18.771235
  15. M. K. Simon and M.-S. Alouini, Digital communication over fading channels, 2nd ed. Hoboken, N.J.: John Wiley & Sons, 2005.

피인용 문헌

  1. Study of the Technical Regulation of Radio Equipment about Ultra Wide Band vol.15, pp.10, 2014, https://doi.org/10.5762/KAIS.2014.15.10.6264