DOI QR코드

DOI QR Code

Evaluation of Contaminant Concentration Reduction Effect of Sorptive Building Materials by New Ventilation Index - Net Escape Velocity

새로운 환기효율지표 Net Escape Velocity에 의한 오염물질 흡착건재의 실내 오염물질 농도저감 효과 평가

  • Received : 2013.08.01
  • Published : 2013.11.25

Abstract

Net Escape Velocity (hereafter NEV) is a new index for evaluating ventilation efficiency. It presents the effective velocity with regard to purging/diluting a contaminant from a certain point within a room. NEV is determined by the average contaminant concentration and the convection and diffusion fluxes at a particular point. NEV can identify the convection and diffusion effect of contaminant transportation in order to define that concentration at a point using one representative velocity scale. The use of sorptive building materials is an effective way to optimize the ventilation rate and to improve/maintain indoor air quality (IAQ). However, efforts to improve IAQ will necessitate a qualitative and quantitative performance evaluation of building materials. The purpose of this paper is to introduce the concept of new ventilation index NEV and to evaluate the contaminant concentration reduction mechanism of sorptive building materials using the concept of NEV.

Keywords

Acknowledgement

Supported by : 일본 학술진흥회

References

  1. Sandberg, M., Ventilation effectiveness and purging flow rate - A review. ISRACVE, p.p. 17-27, 1992
  2. Sandberg, M., What is ventilation efficiency?, Building and Environment, 16, p.p.123-135, 1986
  3. Skaret, E., Mathisen, H.M., Ventilation efficiency. Environment International,8, p.p.473-481, 1982 https://doi.org/10.1016/0160-4120(82)90065-4
  4. Sandberg M. and Sjoberg M., The use of moments for assessing air quality in ventilated rooms. Building and Environment, 18 (4), p.p. 181-197, 1983 https://doi.org/10.1016/0360-1323(83)90026-4
  5. Davidson, L., Olsson, E., Calculation of age and local purging flow rate in rooms, 1987
  6. Kato, S., Murakami, S., New ventilation efficiency scales based on spatial distribution of contaminant concentration aided by numerical simulation. ASHRAE Transactions, 94 (2), p.p.309-330, 1998
  7. Kato, S., Murakami, S., Kobayashi, H., New scales for evaluating ventilation efficiency as affected by supply and exhaust openings based on spatial distribution of contaminant. International Symposium on Room Air Convection and Ventilation Effectiveness, University of Tokyo, p.p. 321-332, 1992
  8. Murakami, S. , New scales for ventilation efficiency and their application based on numerical simulation of room airflow. International Symposium on Room Air Convection and Ventilation Effectiveness, University of Tokyo, p.p. 22-38, 1992
  9. ASHRAE Standard 62, Ventilation for Acceptable Indoor Air Quality. ASHRAE, 2010
  10. SHASE-102 Ventilation Standard, The Society of Heating, Air-Conditioning and Sanitary Engineers of Japan SHASE, 2003
  11. 임은수, 새로운 환기효율 평가 지표 Net Escape Velocity에 의한 불균일한 농도 환경 평가, 대한건축학회 학술발표대회 논문집, p.p. 283-284, 2012
  12. Sandberg, M., private communication, 1997
  13. Lim, E., Ito, K., Sandberg, M., New Ventilation Index for evaluating imperfect mixing condition- Analysis of Net Escape Velocity based on RANS Approach, Building and Environment, 61, p.p. 45-56, 2013 https://doi.org/10.1016/j.buildenv.2012.11.022
  14. 김혜정, 송규동, 이윤규, 기능성 석고보드의 폼알데히드(HCHO) 저감성능 평가를 위한 실물시험(Mock up test)연구, 설비공학논문집, 20(12), p.p. 814-819, 2008
  15. 강윤경, 임정연, 장성기, 이윤규, 소형챔버를 이용한 건축자재의 휘발성유기화합물과 폼알데하이드의 흡착성능에 관한 연구, 대한건축학회논문집 계획계, 25(05), p.p. 311-318, 2009
  16. 김훈, Tanabe, S., Ariga, T., Ozawa, A., Mochida, K., 20L 소형 챔버를 이용한 흡착분해 저감 건축자재 실험법 / 신형 기류 제어 유닛의 개발 및 물질 전달률, 대한건축학회 학술발표대회 논문집, p.p. 837-838, 2007
  17. 박성현, 서장후, 실내 오염물질 농도저감을 위한 오염물질 흡착 건축자재의 최적 설치기준 검토, 대한건축학회지회연합회 논문집, 14(03), p.p. 319-326, 2012
  18. 서장후, 실험과 CFD해석을 이용한 실내 오염물질 흡착건축자재의 성능검증에 관한 연구, 대한 건축학회 논문집, 24(9), p.p. 287-297, 2008
  19. Murakami, S., Kato S.,, Ito K., Zhu, Q., Modeling and CFD Prediction for Diffusion and Adsorption within Room with Various Adsorption Isotherm, Indoor Air, 13(6), p.p. 20-27, 2003 https://doi.org/10.1034/j.1600-0668.13.s.6.3.x
  20. Ataka, Y., Kato, S., Murakami, S., Zhu, Q., Ito, K., Yokota, T., Study of Effect of Adsorptive Building Material on Formaldehyde Concentrations: Development of Measuring Methods and Modeling of Adsorption Phenomena, Indoor Air, 14(8), p.p. 51-64, 2004
  21. Yakhot, V., Orszag, S.Renormalization group analysis of turbulence. I. Basic theory. J. Scientific Computing, 1, p.p. 3-51, 1986 https://doi.org/10.1007/BF01061452