DOI QR코드

DOI QR Code

Micro-mechanical Failure Prediction and Verification for Fiber Reinforced Composite Materials by Multi-scale Modeling Method

멀티스케일 모델링 기법을 이용한 섬유강화 복합재료의 미시역학적 파손예측 및 검증

  • Kim, Myung-Jun (Graduate School, Korea Aerospace Univ.) ;
  • Park, Sung-Ho (Graduate School, Seoul National Univ.) ;
  • Park, Jung-Sun (Aerospace and Mechanical Engineering Department, Korea Aerospace Univ.) ;
  • Lee, Woo-Il (School of Mechanical and Aerospace Engineering, Seoul National Univ.) ;
  • Kim, Min-Sung (Agency for Defense Development)
  • Received : 2012.09.10
  • Accepted : 2012.12.31
  • Published : 2013.01.01

Abstract

In this paper, a micro-mechanical failure prediction program is developed based on SIFT (Strain Invariant Failure Theory) by using the multi-scale modeling method for fiber-reinforced composite materials. And the failure analysis are performed for open-hole composite laminate specimen in order to verify the developed program. First of all, the critical strain invariants are obtained through the tensile tests for three types of specimens. Also, the matrices of strain amplification factors are determined through the finite element analysis for micro-mechanical model, RVE (Representative Volume Element). Finally, the microscopic failure analysis is performed for the open-hole composite laminate specimen model by applying a failure load obtained from tensile test, and the predicted failure indices are evaluated for verification of the developed program.

본 논문에서는 복합재료의 미시적 파손모드를 고려하는 복합재 파손예측 프로그램을 개발하였다. 개발된 프로그램의 검증을 위하여 원공이 있는 복합재 적층판 시편의 인장시험 및 정적 파손해석을 수행하였다. 먼저 적층각도별 복합재 시편에 대한 인장시험을 통하여 논문에 사용된 재료에 대한 SIFT 허용치를 산출하였고, 미시역학적 모델인 RVE에 대한 유한요소 해석을 통하여 변형률 증폭계수를 결정하였다. 또한 원공이 있는 복합재 적층판 시편에 대한 인장시험을 수행하고, 실험을 통해 얻어진 파손하중 결과를 바탕으로 유한요소 모델에 대하여 정적 파손해석을 수행하였다. 마지막으로 실험결과를 바탕으로 예측된 파손지수 결과를 평가함으로써 개발된 프로그램의 효용성을 검증하였다.

Keywords

References

  1. Tsai, S.W., Wu, E.M., "A General Theory of Strength for Anisotropic Materials," Journal of Composite Materials, Vol. 5, 1971, pp.58-80. https://doi.org/10.1177/002199837100500106
  2. Hashin, Z., "Failure Criteria for Unidirectional Fiber Composites," Journal of Applied Mechanics, Vol. 47, 1980, pp.329-334. https://doi.org/10.1115/1.3153664
  3. Sun, C.T., Tao, T.X., "Prediction of failure envelopes and stress/strain behaviour of composite laminates," Composites Science and Technology, Vol. 58, 1009, pp.1125-1136.
  4. Gosse, JH, Christensen, S., "Strain invariant failure criterion for polymer in composite materials," Structural Dynamics and Materials Conference, Vol. 1, 2001, pp.45-55.
  5. R. Li, D. Kelly, A. Crosky, "An evaluation of failure criteria for matrix induced failure in composite materials," Composite Structures, Vol. 57, 2002, pp.385-391. https://doi.org/10.1016/S0263-8223(02)00106-X
  6. Tay T.E.,Tan S.H.N, Tan V.B.C., Gosse J.H., "Damage progression by the element-failure method(EFM) and strain invariant failure theory(SIFT)," Composites Science and Technology, Vol.65, 2005, p.935-944. https://doi.org/10.1016/j.compscitech.2004.10.022
  7. Tong-Earn Tay, Vincent B.C., Tan, Guangyan Liu, "A new integrated micro-macro approach to damage and fracture of composites," Materials Science and Engineering, B 132, 2006, pp.138-142. https://doi.org/10.1016/j.mseb.2006.02.023

Cited by

  1. Extended Unmixing-Mixing Scheme for Prediction of 3D Behavior of Porous Composites vol.41, pp.2, 2013, https://doi.org/10.5139/JKSAS.2013.41.2.91