An Efficient Synthesis of Phospha-Morita-Baylis-Hillman Adducts via Michaelis-Arbuzov Reaction of the DABCO Salt of Morita-Baylis-Hillman Bromide

Sung Hwan Kim, Se Hee Kim, Hyun Seung Lee, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr
Received October 3, 2012, Accepted October 19, 2012

An efficient synthesis of phospha-Morita-Baylis-Hillman adducts was carried out in good yields via the Michaelis-Arbuzov reaction of the DABCO salts of MBH bromides. Instead of a DABCO salt, a phosphonium salt could be effectively used for some substrates which showed some problems in the presence of DABCO.
Key Words : Phospha-Morita-Baylis-Hillman adducts, Michaelis-Arbuzov reaction, DABCO salt, Allylic phosphonates

Introduction

The preparation of alkyl phosphonates was carried out most frequently using alkyl halides and trialkyl phosphites via the Michaelis-Arbuzov reaction. ${ }^{1}$ The Morita-BaylisHillman (MBH) acetates or bromides could be used efficiently for the preparation of allylic phosphonates. ${ }^{2-4}$ Actually, the primary allylic phosphonate has been prepared from the acetate of MBH adducts by Basavaiah and Pandiaraju, ${ }^{2 a}$ as shown in Eq. (1) (Scheme 1). The preparation of a secondary phosphonate was examined with MBH bromides or chlorides by McFadden and co-workers; however, a mixture of primary and secondary phosphonates was formed (Eq. 2). ${ }^{3}$ Yang and co-workers have reported the selective synthesis of secondary phosphonates via Michaelis-Becker reaction using diethyl phosphite and an excess amount of DABCO (Eq. 3). ${ }^{4}$ However, the reaction provided low to moderate yields ($32-63 \%$) with only two examples. The reason for the low yield must be due to insufficient generation of the anion
of diethyl phosphite with DABCO. ${ }^{5,6}$ In these contexts, we decided to examine the synthesis of secondary phosphonate 3a, namely a phospha-Morita-Baylis-Hillman (phospha-MBH) adduct, via the Michaelis-Arbuzov reaction using trialkyl phosphite and the DABCO salt of MBH bromide (Eq. 4). ${ }^{7}$

Results and Discussion

The reaction of MBH bromide $\mathbf{1 a}^{8}$ and DABCO (1.0 equiv) in $\mathrm{CH}_{3} \mathrm{CN}$ readily provided a DABCO salt $\mathbf{2 a}$ at room temperature within $30 \mathrm{~min} .{ }^{9}$ The Michaelis-Arbuzov reaction between 2a and triethyl phosphite (2.0 equiv) at $80^{\circ} \mathrm{C}$ for 3 h afforded phospha-MBH adduct 3a in good yield (92\%) along with a trace amount of alkenylphosphonate $\mathbf{4 a}(<3 \%$, vide infra). The tetrasubstituted alkenylphosphonate 4a must be formed via a double-bond isomerization of 3a by DABCO . Thus, we examined the feasibility for the isomerization of 3a to 4a, as shown in Scheme 2. Actually, a treatment of 3a with DABCO or $\mathrm{Et}_{3} \mathrm{~N}$ showed very sluggish
(Eq. 1)

(Eq. 2)

(Eq. 3)

(Eq. 4)

Scheme 1
3a
DBU (0.5 equiv)
toluene, reflux, 10 h
DBU (0.5 equiv)
toluene, reflux, 10 h
4a

Scheme 2

Table 1. Synthesis of phospha-Morita-Baylis-Hillman adducts ${ }^{a}$
Entry
${ }^{a}$ Conditions: (i) MBH bromide (0.5 mmol), DABCO (1.0 equiv), $\mathrm{CH}_{3} \mathrm{CN}$, $\mathrm{rt}, 30 \mathrm{~min}$. (ii) Trialkyl phosphite (2.0 equiv), $80^{\circ} \mathrm{C}, 3 \mathrm{~h} .{ }^{b}$ Reaction time: 8 h .
reactivity. The reaction of $\mathbf{3 a}$ and DBU (0.5 equiv) in refluxing toluene showed the formation of $\mathbf{4 a}$; however, the reaction was not completed even after 10 h . The isolated yield of $\mathbf{4 a}$ was $\mathbf{2 0 \%}$, and 3a was recovered in 74%. Treatment of $\mathbf{4 a}$
with DBU (0.5 equiv) afforded 3a in 73% along with remaining $\mathbf{4 a}$ in 22%. The results stated that these two compounds can be converted each other. Similar rearrangements between allylic and alkenylphosphonates have been reported. ${ }^{10}$ The stereochemistry of $\mathbf{4 a}$ was confirmed by the three-bond coupling constant between phosphorous atom and carbon atoms, as also shown in Scheme 2. ${ }^{11}$

Encouraged by the successful results, various phosphaMBH adducts $\mathbf{3 b - g}$ were synthesized and the results are summarized in Table 1. Besides triethyl phosphite (entry 1), the reactions with trimethyl- and triisopropyl phosphites afforded the corresponding phosphonates $\mathbf{3 b}$ and $\mathbf{3 c}$ in good yields (entries 2 and 3). The reactions of other MBH bromides 1b-d (entries 4-6) provided 3d-f in good yields (85$94 \%$). The bromide 1 e (entry 7), which was prepared from the corresponding MBH bromide of methyl vinyl ketone, ${ }^{8 g}$ also afforded $\mathbf{3 g}$ in good yield (78\%). As noted above, the corresponding alkenylphosphonates were observed in most of the entries; however, the amount was negligible ($<5 \%$) and the desired products $\mathbf{3 b - g}$ could be separated easily.

When we carried out the reaction of p-nitro derivative $\mathbf{1 f},{ }^{8 h}$ the desired product $\mathbf{3 h}$ was formed as a major product; however, an appreciable amount of alkenylphosphonate 4b was formed together, as shown in Scheme 3. The compound $\mathbf{4 b}$ must be formed via the double bond isomerization of $\mathbf{3 h}$.

Scheme 4

Scheme 3

Scheme 5

The benzylic proton of $\mathbf{3 h}$ would be more acidic than the corresponding protons of $\mathbf{3 a - g}$, and this could be the reason for the formation of $\mathbf{4 b}$ in an increased amount. In addition, the formation of $\mathbf{4 b}$ made the separation of $\mathbf{3 h}$ very tedious. Thus we examined the Michaelis-Arbuzov reaction of the phosphonium salt of $\mathbf{1 f}$ instead of a DABCO salt. ${ }^{12}$ To our delight, compound 3 h could be obtained in good yield (69%) without the formation of $\mathbf{4 b}$.
The reaction of a nitrile derivative $\mathbf{1 g}^{8 b}$ also showed a severe isomerization problem, as shown in Scheme 4. The phosphonate $\mathbf{3 i}$ was not formed at all when the DABCO salt was used in the Michaelis-Arbuzov reaction. Instead, an E / Z mixture of alkenylphosphonate $\mathbf{4 c}(E / Z=4: 1)$ was obtained in 83%. Thus, we carried out the reaction with a phosphonium salt, and the secondary phosphonate $\mathbf{3 i}$ was obtained in moderate yield (67\%).

The use of a DABCO salt was also ineffective for the alkyl derivative $\mathbf{1 h} .{ }^{8 b}$ During the synthesis of a DABCO salt of $\mathbf{1 h}$, a slow formation of a cyclohexene derivative 5 was observed. The cyclohexene derivative $\mathbf{5}$ could be formed by an E2 elimination of $\mathbf{1 h}$ or its DABCO salt to form a 1,3diene intermediate I and a subsequent Diels-Alder reaction, ${ }^{13}$ as shown in Scheme 5. In order to reduce the formation of 5, we carried out the Michaelis-Arbuzov reaction in the presence of an excess amount (6.0 equiv) of triethyl phosphite; however, both cyclohexene 5 (38\%) and phosphonate 3j (35%) were produced together. Thus, the desired phosphonate $\mathbf{3 j}$ was prepared by using a phosphonium salt in moderate yield (56%), as for the synthesis of $\mathbf{3 h}$ and $\mathbf{3 i}$.

In order to compare the reactivity between DABCO salt and phosphonium salt, we examined the preparation of 3a from 1a via the phosphonium salt as in the Schemes 3-5. The yield of $\mathbf{3 a}$ was low (68%) as compared to that of the DABCO salt (92%, entry 1 in Table 1). The MichaelisArbuzov reaction was also examined between triethyl phosphite and the DABCO salt of MBH acetate instead of MBH bromide. The phosphonate 3a was obtained in only 48\% yield under the same conditions ($80^{\circ} \mathrm{C}, 3 \mathrm{~h}$), although the corresponding DABCO salt was formed quantitatively in aqueous THF. The formation of a DABCO salt in $\mathrm{CH}_{3} \mathrm{CN}$ was so sluggish, thus the following Michaelis-Arbuzov reaction could not be carried out.

In summary, we disclosed an efficient synthesis of phospha-Morita-Baylis-Hillman adducts in good yields via the Michaelis-Arbuzov reaction of the DABCO salts of MBH bromides. Instead of a DABCO salt, a phosphonium salt
could be effectively used for some substrates which showed some problems in the presence of DABCO .

Experimental Section

${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) spectra were recorded using tetramethylsilane (TMS, $\delta=0 \mathrm{ppm}$) as an internal standard. ${ }^{31} \mathrm{P}$ NMR (121 MHz) spectra were recorded using $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(\delta=0 \mathrm{ppm})$ as an external standard. The preparation of MBH bromides 1a-h was carried out according to the literature procedure. ${ }^{8}$

Typical Procedure for the Synthesis of 3a. A mixture of 1a ($128 \mathrm{mg}, 0.5 \mathrm{mmol}$) and DABCO ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ was stirred at room temperature for 30 min. To the solution triethyl phosphite $(166 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added, and the reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 3 h . After the extractive aqueous workup and column chromatographic purification process (hexanes/EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 2:1:1), compound 3a was isolated as a colorless oil, 144 mg (92\%). Other compounds were prepared similarly. The separation of product from the side product such as triethyl phosphate and/or triphenylphosphine oxide was somewhat tedious for some entries. Thus the following solvent system during the flash column chromatographic purification step is recommended: compounds $\mathbf{3 a - d}$, $\mathbf{3 f}$ and $\mathbf{3 g}$ (hexanes/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 1: 1$); compounds $\mathbf{3 e}$, 3h and 3i (toluene/ EtOAc, 4:1); compound $\mathbf{3 j}\left(\mathrm{CHCl}_{3}\right)$. The spectroscopic data of $\mathbf{3 a - j}, \mathbf{4 a}, \mathbf{4 c}$ and 5 are as follows.

Compound 3a: 92\%; colorless oil; IR (film) 1722, 1624, 1441, 1244, 1053, $1024 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.56-3.69$ $(\mathrm{m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.96-4.05(\mathrm{~m}, 2 \mathrm{H})$, $4.52\left(\mathrm{~d}, J_{\mathrm{PH}}=24.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 7.15-$ 7.27 (m, 3H), 7.37-7.40 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 16.07\left(J_{\mathrm{PC}}=5.7 \mathrm{~Hz}\right), 16.25\left(J_{\mathrm{PC}}=5.7 \mathrm{~Hz}\right), 44.24\left(J_{\mathrm{PC}}=\right.$ $140.8 \mathrm{~Hz}), 52.26,62.36\left(J_{\mathrm{PC}}=6.9 \mathrm{~Hz}\right), 62.86\left(J_{\mathrm{PC}}=6.9 \mathrm{~Hz}\right)$, $127.36\left(J_{\mathrm{PC}}=2.3 \mathrm{~Hz}\right), 128.41\left(J_{\mathrm{PC}}=1.7 \mathrm{~Hz}\right), 128.82\left(J_{\mathrm{PC}}=\right.$ $6.3 \mathrm{~Hz}), 129.56\left(J_{\mathrm{PC}}=6.9 \mathrm{~Hz}\right), 134.73\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 136.01$ $\left(J_{\mathrm{PC}}=1.7 \mathrm{~Hz}\right), 166.55\left(J_{\mathrm{PC}}=14.3 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $121 \mathrm{MHz}) \delta 24.63$; ESIMS $m / z 313\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}, 57.69 ; \mathrm{H}, 6.78$. Found: C, 57.92; H, 6.61.

Compound 3b: 80\%; colorless oil; IR (film) 1721, 1624, 1454, 1439, 1244, 1057, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 3.40(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.55\left(\mathrm{~d}, J_{\mathrm{PH}}=24.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.47(\mathrm{~d}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.35-$
$7.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 43.74\left(\mathrm{~J}_{\mathrm{PC}}=\right.$ $140.8 \mathrm{~Hz}), 52.29,53.08\left(J_{\mathrm{PC}}=7.4 \mathrm{~Hz}\right), 53.57\left(J_{\mathrm{PC}}=6.9 \mathrm{~Hz}\right)$, $127.48\left(J_{\mathrm{PC}}=2.9 \mathrm{~Hz}\right), 128.52\left(J_{\mathrm{PC}}=2.3 \mathrm{~Hz}\right), 128.97\left(J_{\mathrm{PC}}=\right.$ $6.3 \mathrm{~Hz}), 129.44\left(J_{\mathrm{PC}}=6.9 \mathrm{~Hz}\right), 134.40\left(J_{\mathrm{PC}}=6.2 \mathrm{~Hz}\right), 135.72$ $\left(J_{\mathrm{PC}}=1.7 \mathrm{~Hz}\right), 166.39\left(J_{\mathrm{PC}}=14.3 \mathrm{~Hz}\right) ;$ ESIMS $m / z 285$ $\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{P}$: C, 54.93; H, 6.03. Found: C, 54.77; H, 6.34.

Compound 3c: 84\%; colorless oil; IR (film) 1722, 1624, 1454, 1385, 1242, 1021, $988 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 0.75(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.64(\mathrm{~s}$, $3 \mathrm{H}), 4.25-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.45\left(\mathrm{~d}, J_{\mathrm{PH}}=24.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.54-$ $4.65(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.41(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \mathrm{d} 22.93\left(J_{\mathrm{PC}}=5.8 \mathrm{~Hz}\right), 23.61\left(J_{\mathrm{PC}}=5.7 \mathrm{~Hz}\right), 23.97$ $\left(J_{\mathrm{PC}}=3.5 \mathrm{~Hz}\right), 24.14\left(J_{\mathrm{PC}}=2.9 \mathrm{~Hz}\right), 44.73\left(J_{\mathrm{PC}}=142.5 \mathrm{~Hz}\right)$, $52.17,70.68\left(J_{\mathrm{PC}}=7.4 \mathrm{~Hz}\right), 71.37\left(J_{\mathrm{PC}}=6.8 \mathrm{~Hz}\right), 127.20$ $\left(J_{\mathrm{PC}}=2.3 \mathrm{~Hz}\right), 128.25\left(J_{\mathrm{PC}}=1.7 \mathrm{~Hz}\right), 128.48\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right)$, $129.73\left(J_{\mathrm{PC}}=6.9 \mathrm{~Hz}\right), 135.13\left(J_{\mathrm{PC}}=5.7 \mathrm{~Hz}\right), 136.43\left(J_{\mathrm{PC}}=\right.$ $1.7 \mathrm{~Hz}), 166.64\left(J_{\mathrm{PC}}=14.3 \mathrm{~Hz}\right)$; ESIMS $m / z 341\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{P}$: C, 59.99; H, 7.40. Found: C, 60.10; H, 7.19.

Compound 3d: 93\%; colorless oil; IR (film) 1722, 1626, 1491, 1439, 1242, 1053, $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.04(\mathrm{td}, J=7.2$ and $0.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 3.62-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.92(\mathrm{~m}, 1 \mathrm{H})$, $3.96-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.48\left(\mathrm{~d}, J_{\mathrm{PH}}=24.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.45(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.23(\mathrm{~m}, 2 \mathrm{H})$, 7.29-7.34 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 16.14\left(J_{\mathrm{PC}}\right.$ $=5.7 \mathrm{~Hz}), 16.26\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 43.68\left(J_{\mathrm{PC}}=141.4 \mathrm{~Hz}\right)$, $52.34,62.55\left(J_{\mathrm{PC}}=6.9 \mathrm{~Hz}\right), 62.88\left(J_{\mathrm{PC}}=6.8 \mathrm{~Hz}\right), 128.58$ $\left(J_{\mathrm{PC}}=2.3 \mathrm{~Hz}\right), 129.00\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 130.88\left(J_{\mathrm{PC}}=6.8 \mathrm{~Hz}\right)$, $133.37\left(J_{\mathrm{PC}}=2.9 \mathrm{~Hz}\right), 133.43\left(J_{\mathrm{PC}}=5.7 \mathrm{~Hz}\right), 135.78\left(J_{\mathrm{PC}}=\right.$ $1.7 \mathrm{~Hz}), 166.38\left(J_{\mathrm{PC}}=14.3 \mathrm{~Hz}\right)$; ESIMS $m / z 347\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ClO}_{5} \mathrm{P}$: C, 51.96; H, 5.81. Found: C, 51.89; H, 6.01.

Compound 3e: 94\%; colorless oil; IR (film) 1722, 1609, $1512,1441,1254,1134,1053,1028 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 1.08(\mathrm{td}, J=7.2$ and $0.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{td}, J=$ 7.2 and $0.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.64-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 3.83-3.96(\mathrm{~m}, 1 \mathrm{H}), 4.01-4.12(\mathrm{~m}, 2 \mathrm{H}), 4.52\left(\mathrm{~d}, J_{\mathrm{PH}}=\right.$ $24.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-6.51(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.86(\mathrm{~m}, 2 \mathrm{H}), 7.33-$ $7.38(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 16.14\left(J_{\mathrm{PC}}=5.7\right.$ $\mathrm{Hz}), 16.25\left(J_{\mathrm{PC}}=6.2 \mathrm{~Hz}\right), 43.36\left(J_{\mathrm{PC}}=141.9 \mathrm{~Hz}\right), 52.22$, $55.11,62.26\left(J_{\mathrm{PC}}=6.9 \mathrm{~Hz}\right), 62.81\left(J_{\mathrm{PC}}=6.8 \mathrm{~Hz}\right), 113.81\left(J_{\mathrm{PC}}\right.$ $=1.7 \mathrm{~Hz}), 126.59\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 128.41\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right)$, $130.61\left(J_{\mathrm{PC}}=6.8 \mathrm{~Hz}\right), 136.31\left(J_{\mathrm{PC}}=1.2 \mathrm{~Hz}\right), 158.85\left(J_{\mathrm{PC}}=\right.$ $2.9 \mathrm{~Hz}), 166.58\left(J_{\mathrm{PC}}=14.3 \mathrm{~Hz}\right)$; ESIMS $m / z 343\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{P}: \mathrm{C}, 56.14 ; \mathrm{H}, 6.77$. Found: C, 56.43; H, 6.96.

Compound 3f: 85%; colorless oil; IR (film) 1722, 1624, 1439, 1240, 1134, 1053, $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 0.96(\mathrm{td}, J=7.2$ and $0.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 3.54-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.87(\mathrm{~m}, 1 \mathrm{H})$, $3.97-4.07(\mathrm{~m}, 2 \mathrm{H}), 4.69\left(\mathrm{~d}, J_{\mathrm{PH}}=24.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.51(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.39(\mathrm{~m}, 2 \mathrm{H})$, $7.50(\mathrm{dt}, J=8.4$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.84(\mathrm{t}$,
$J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 16.10\left(J_{\mathrm{PC}}=\right.$ $5.7 \mathrm{~Hz}), 16.27\left(J_{\mathrm{PC}}=5.7 \mathrm{~Hz}\right), 44.36\left(J_{\mathrm{PC}}=140.8 \mathrm{~Hz}\right), 52.25$, $62.42\left(J_{\mathrm{PC}}=7.5 \mathrm{~Hz}\right), 62.85\left(J_{\mathrm{PC}}=6.9 \mathrm{~Hz}\right), 125.91\left(J_{\mathrm{PC}}=1.1\right.$ $\mathrm{Hz}), 126.00\left(J_{\mathrm{PC}}=1.1 \mathrm{~Hz}\right), 127.44,127.49\left(J_{\mathrm{PC}}=5.2 \mathrm{~Hz}\right)$, $127.88\left(J_{\mathrm{PC}}=1.1 \mathrm{~Hz}\right), 128.04\left(J_{\mathrm{PC}}=1.1 \mathrm{~Hz}\right), 128.52\left(J_{\mathrm{PC}}=\right.$ $8.0 \mathrm{~Hz}), 128.96\left(J_{\mathrm{PC}}=6.8 \mathrm{~Hz}\right), 132.25\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 132.53$ $\left(J_{\mathrm{PC}}=1.7 \mathrm{~Hz}\right), 133.19\left(J_{\mathrm{PC}}=2.3 \mathrm{~Hz}\right), 135.01\left(J_{\mathrm{PC}}=1.7 \mathrm{~Hz}\right)$, $166.54\left(J_{\mathrm{PC}}=13.8 \mathrm{~Hz}\right)$; ESIMS m/z $363\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}, 62.98 ; \mathrm{H}, 6.40$. Found: C, $62.65 ; \mathrm{H}$, 6.33 .

Compound 3g: 78\%; colorless oil; IR (film) 1682, 1624, 1495, 1366, 1246, 1055, $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $2.27(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.93-$ $4.03(\mathrm{~m}, 2 \mathrm{H}), 4.74\left(\mathrm{~d}, J_{\mathrm{PH}}=23.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.31(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.37-$ $7.41(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 16.04\left(J_{\mathrm{PC}}=5.7\right.$ $\mathrm{Hz}), 16.22\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 25.29,41.56\left(J_{\mathrm{PC}}=140.8 \mathrm{~Hz}\right)$, $62.14\left(J_{\mathrm{PC}}=7.4 \mathrm{~Hz}\right), 62.82\left(J_{\mathrm{PC}}=7.4 \mathrm{~Hz}\right), 127.19\left(J_{\mathrm{PC}}=2.9\right.$ $\mathrm{Hz}), 128.39\left(J_{\mathrm{PC}}=1.7 \mathrm{~Hz}\right), 128.91\left(J_{\mathrm{PC}}=6.9 \mathrm{~Hz}\right), 129.51$ $\left(J_{\mathrm{PC}}=7.4 \mathrm{~Hz}\right), 135.22\left(J_{\mathrm{PC}}=5.8 \mathrm{~Hz}\right), 144.48\left(J_{\mathrm{PC}}=2.3 \mathrm{~Hz}\right)$, $197.34\left(J_{\mathrm{PC}}=10.3 \mathrm{~Hz}\right)$; ESIMS m/z $297\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}: \mathrm{C}, 60.80 ; \mathrm{H}, 7.14$. Found: C, $60.87 ; \mathrm{H}$, 7.02.

Compound 3h: 69\%; colorless oil; IR (film) 1722, 1597, $1524,1441,1348,1244,1051,1024 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 1.05(\mathrm{td}, J=7.2$ and $0.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{td}, J=$ 7.2 and $0.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.82-$ $3.95(\mathrm{~m}, 1 \mathrm{H}), 3.99-4.09(\mathrm{~m}, 2 \mathrm{H}), 4.61\left(\mathrm{~d}, J_{\mathrm{PH}}=24.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.53(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-$ $7.59(\mathrm{~m}, 2 \mathrm{H}), 8.09-8.13(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 16.17\left(J_{\mathrm{PC}}=5.8 \mathrm{~Hz}\right), 16.32\left(\mathrm{~J}_{\mathrm{PC}}=5.8 \mathrm{~Hz}\right), 44.40\left(\mathrm{~J}_{\mathrm{PC}}=\right.$ $140.8 \mathrm{~Hz}), 52.55,62.97\left(J_{\mathrm{PC}}=6.8 \mathrm{~Hz}\right), 63.00\left(J_{\mathrm{PC}}=7.5 \mathrm{~Hz}\right)$, $123.59\left(J_{\mathrm{PC}}=2.3 \mathrm{~Hz}\right), 129.87\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 130.48\left(J_{\mathrm{PC}}=\right.$ $6.9 \mathrm{~Hz}), 135.12\left(J_{\mathrm{PC}}=2.3 \mathrm{~Hz}\right), 142.69\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 147.24$ $\left(J_{\mathrm{PC}}=2.9 \mathrm{~Hz}\right), 166.18\left(J_{\mathrm{PC}}=14.3 \mathrm{~Hz}\right) ;$ ESIMS $m / z 358$ $\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{7} \mathrm{P}: \mathrm{C}, 50.42 ; \mathrm{H}, 5.64 ; \mathrm{N}$, 3.92. Found: C, 50.33; H, 5.92; N, 3.76.

Compound 3i: 67\%; colorless oil; IR (film) 2224, 1601, 1454, 1393, 1250, 1051, 1022, $968 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 1.05(\mathrm{td}, J=7.2$ and $0.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 3.65-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.90\left(\mathrm{~d}, J_{\mathrm{PH}}\right.$ $=24.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-4.11(\mathrm{~m}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.21(\mathrm{dd}, J=3.0$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.37-$ $7.41(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 16.06\left(J_{\mathrm{PC}}=5.1\right.$ Hz ,), $16.21\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 48.83\left(J_{\mathrm{PC}}=140.9 \mathrm{~Hz}\right), 62.79$ $\left(J_{\mathrm{PC}}=7.4 \mathrm{~Hz}\right), 63.45\left(J_{\mathrm{PC}}=6.8 \mathrm{~Hz}\right), 117.80\left(J_{\mathrm{PC}}=10.3 \mathrm{~Hz}\right)$, $119.48\left(J_{\mathrm{PC}}=5.1 \mathrm{~Hz}\right), 128.30\left(J_{\mathrm{PC}}=2.3 \mathrm{~Hz}\right), 128.88\left(J_{\mathrm{PC}}=\right.$ $1.7 \mathrm{~Hz}), 129.42\left(J_{\mathrm{PC}}=6.9 \mathrm{~Hz}\right), 132.37\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 134.32$ $\left(J_{\mathrm{PC}}=8.6 \mathrm{~Hz}\right)$; ESIMS m/z $280\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{P}: \mathrm{C}, 60.21 ; \mathrm{H}, 6.50 ; \mathrm{N}, 5.02$. Found: C, 60.46; H, 6.43; N, 4.86.

Compound 3j: 56\%; colorless oil; IR (film) 1722, 1439, 1246, 1051, 1026, $959 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $0.79(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.19(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.82-$ $1.94(\mathrm{~m}, 1 \mathrm{H}), 3.28\left(\mathrm{ddd}, J_{\mathrm{PH}}=23.4 \mathrm{~Hz}, J=10.8\right.$ and 4.2 Hz ,
$1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.93-4.07(\mathrm{~m}, 4 \mathrm{H}), 5.83(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.41(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $13.95,16.30\left(J_{\mathrm{PC}}=5.8 \mathrm{~Hz}\right), 16.35\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 22.32$, $26.90\left(J_{\mathrm{PC}}=13.7 \mathrm{~Hz}\right), 29.26\left(J_{\mathrm{PC}}=3.4 \mathrm{~Hz}\right), 31.41\left(J_{\mathrm{PC}}=1.1\right.$ $\mathrm{Hz}), 37.14\left(J_{\mathrm{PC}}=137.3 \mathrm{~Hz}\right), 52.25,62.05\left(J_{\mathrm{PC}}=7.4 \mathrm{~Hz}\right)$, $62.17\left(J_{\mathrm{PC}}=6.8 \mathrm{~Hz}\right), 127.30\left(J_{\mathrm{PC}}=8.6 \mathrm{~Hz}\right), 136.12\left(J_{\mathrm{PC}}=\right.$ $8.0 \mathrm{~Hz}), 167.20\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right)$; ESIMS $m / z 307\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}, 54.89$; H, 8.88. Found: C, 55.06; H, 8.69.

Compound 4a: 20\%; colorless oil; IR (film) 1736, 1625, 1597, 1435, 1260, 1133, 1023, $966 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 1.16(\mathrm{td}, J=7.2$ and $0.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.78(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.87-4.06(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.14(\mathrm{~m}$, $2 \mathrm{H}), 7.22-7.34(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 16.12$ $\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 19.05\left(J_{\mathrm{PC}}=15.5 \mathrm{~Hz}\right), 52.53,62.22\left(J_{\mathrm{PC}}=5.7\right.$ $\mathrm{Hz}), 127.76\left(J_{\mathrm{PC}}=2.3 \mathrm{~Hz}\right), 128.39\left(J_{\mathrm{PC}}=1.1 \mathrm{~Hz}\right), 128.90$ $\left(J_{\mathrm{PC}}=4.6 \mathrm{~Hz}\right), 130.67\left(J_{\mathrm{PC}}=178.1 \mathrm{~Hz}\right), 135.06\left(J_{\mathrm{PC}}=8.0\right.$ $\mathrm{Hz}), 146.27\left(J_{\mathrm{PC}}=9.8 \mathrm{~Hz}\right), 170.45\left(J_{\mathrm{PC}}=9.8 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 121 \mathrm{MHz}\right) \delta 12.98$; ESIMS $m / z 313\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}, 57.69$; $\mathrm{H}, 6.78$. Found: C, $57.54 ; \mathrm{H}$, 6.91 .

Compound 4c: 83\%; colorless oil; IR (film) 2218, 1643, 1445, 1236, 1051, $1020 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$, E-form) $\delta 1.15(\mathrm{td}, J=7.2$ and $0.3 \mathrm{~Hz}, 6 \mathrm{H}), 2.42(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 3 \mathrm{H})$, , 3.85-4.11 (m, 4H), 7.19-7.23 (m, 2H), 7.29-7.37 $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, E\right.$-form $) \delta 16.03\left(J_{\mathrm{PC}}=\right.$ $6.3 \mathrm{~Hz}), 19.64\left(J_{\mathrm{PC}}=5.2 \mathrm{~Hz}\right), 62.73\left(J_{\mathrm{PC}}=5.7 \mathrm{~Hz}\right), 117.76$ $\left(J_{\mathrm{PC}}=30.9 \mathrm{~Hz}\right), 124.82\left(J_{\mathrm{PC}}=20.6 \mathrm{~Hz}\right), 128.37\left(J_{\mathrm{PC}}=4.4\right.$ $\mathrm{Hz}), 128.42\left(J_{\mathrm{PC}}=1.1 \mathrm{~Hz}\right), 128.95\left(J_{\mathrm{PC}}=1.7 \mathrm{~Hz}\right), 136.07$ $\left(J_{\mathrm{PC}}=6.8 \mathrm{~Hz}\right), 146.76\left(J_{\mathrm{PC}}=176.3 \mathrm{~Hz}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}, Z$-form) $\delta 1.90$ (td, $J=7.2$ and $0.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.86$ (d, $J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.85-4.11(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 2 \mathrm{H})$, 7.29-7.37 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, Z$-form) δ $20.80\left(J_{\mathrm{PC}}=13.7 \mathrm{~Hz}\right), 63.16\left(J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right), 121.37\left(J_{\mathrm{PC}}=\right.$ $3.5 \mathrm{~Hz}), 128.14\left(J_{\mathrm{PC}}=5.1 \mathrm{~Hz}\right), 128.57\left(J_{\mathrm{PC}}=1.7 \mathrm{~Hz}\right), 128.66$ $\left(J_{\mathrm{PC}}=2.3 \mathrm{~Hz}\right), 133.97\left(J_{\mathrm{PC}}=6.9 \mathrm{~Hz}\right), 147.01\left(J_{\mathrm{PC}}=177.4\right.$ Hz), 2 carbon signals were overlapped; ESIMS m/z 280 $\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{P}: \mathrm{C}, 60.21 ; \mathrm{H}, 6.50 ; \mathrm{N}$, 5.02. Found: C, 60.37; H, 6.39; N, 4.83.

Compound 5: 38%; colorless oil; IR (KBr) 1730, 1715, 1651, 1456, 1435, 1258, $1229 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 0.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 0.96-1.09 (m, 1H), 1.15-1.41 (m, 8H), 1.47-1.58 (m, 1H), $1.64-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.13(\mathrm{~m}, 1 \mathrm{H})$, $2.24-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.78(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}$, $3 \mathrm{H}), 5.30(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dt}, J=15.6 \mathrm{and} 6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99(\mathrm{dt}, J=5.1$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 13.82,13.92,22.05,22.14,22.87,25.37,29.87$, $31.29,31.40,32.44,40.65,50.47,51.52,52.05,128.32$, 130.12, 131.98, 142.65, 167.60, 175.50; ESIMS m/z 337 $\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$: C, 71.39; H, 9.59. Found: C, $71.08 ; \mathrm{H}, 9.51$. The compound $\mathbf{5}$ was isolated as a single diastereomer presumably as a trans based on the reported papers; ${ }^{13}$ however, we did not confirm the stereochemistry decisively.

Acknowledgments. This research was supported by Basic

Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1B3000541). Spectroscopic data were obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. For the Michaelis-Arbuzov reaction, see: (a) Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415. (b) Rajeshwaran, G. G.; Nandakumar, M.; Sureshbabu, R.; Mohanakrishnan, A. K. Org. Lett. 2011, 13, 1270 and further references cited therein. (c) Jansa, P.; Holy, A.; Dracinsky, M.; Baszczynnski, O.; Cesnek, M.; Janeba, Z. Green Chem. 2011, 13, 882. (d) Matveeva, E. V.; Odinets, I. L.; Kozlov, V. A.; Shaplov, A. S.; Mastryukova, T. A. Tetrahedron Lett. 2006, 47, 7645. (e) Lewis, E. S.; Hamp, D. J. Org. Chem. 1983, 48, 2025.
2. For the synthesis of cinnamylphosphonates, see: (a) Basavaiah, D.; Pandiaraju, S. Tetrahedron 1996, 52, 2261. (b) Das, B.; Bhunia, N.; Damodar, K. Synth. Commun. 2012, 42, 2479. (c) Janecki, T.; Bodalski, R. Synthesis 1990, 799. (d) Badkar, P. A.; Rath, N. P.; Spilling, C. D. Org. Lett. 2007, 9, 3619. (e) Ho, C.-Y.; Chan, C.W.; Wo, S.-K.; Zuo, Z.; Chan, L.-Y. Org. Biomol. Chem. 2010, 8 , 3480. (f) Muthiah, C.; Senthil Kumar, K.; Vittal, J. J.; Kumara Swamy, K. C. Synlett 2002, 1787.
3. McFadden, H. G.; Harris, R. L. N.; Jenkins, C. L. D. Aust. J. Chem. 1989, 42, 301.
4. Yang, L.; Xu, L.; Yu, C. Phosphorous, Sulfur, and Silicon 2009, 184, 2049.
5. For the Michaelis-Becker reaction, see: (a) Gavara, L.; Petit, C.; Montchamp. J.-L. Tetrahedron Lett. 2012, 53, 5000. (b) Cohen, R. J.; Fox, D. L.; Eubank, J. F.; Salvatore, R. N. Tetrahedron Lett. 2003, 44, 8617. The Michaelis-Becker reaction has also been applied for the synthesis of phospha-MBH adducts, see: (c) Beji, F.; Lebreton, J.; Villieras, J.; Amri, H. Synth. Commun. 2002, 32, 3273. (d) Deng, H.-P.; Shi, M. Eur. J. Org. Chem. 2012, 183. (e) Balaraman, E.; Srinivas, V.; Kumara Swamy, K. C. Tetrahedron 2009, 65, 7603.
6. Deprotonation of dialkyl phosphite usually required a strong base such as $\mathrm{Na}, \mathrm{NaOEt}, \mathrm{KO}^{t} \mathrm{Bu}, \mathrm{NaH}, \mathrm{NaNH}_{2}$ and BuLi. For the $\mathrm{p} K_{\mathrm{a}}$ values of various dialkyl phosphites, see: (a) Li, J.-N.; Liu, L.; Fu, Y.; Guo, Q.-X. Tetrahedron 2006, 62, 4453. Actually, when we repeat the procedure of Yang and co-workers in the presence of DABCO (2.0 equiv) with diethyl phosphite (1.5 equiv) in toluene, ${ }^{4}$ the yield of 3a was only 37% even after 15 h . The reaction in $\mathrm{CH}_{3} \mathrm{CN}$ was more sluggish, and the product 3a was obtained in only 13% (reflux, 20 h).
7. Michaelis-Arbuzov and Michaelis-Becker reactions showed a different reactivity in some cases, see: (a) Hasnik, Z.; Pohl, R.; Hocek, M. Tetrahedron Lett. 2010, 51, 2464. (b) Megati, S.; Phadtare, S.; Zemlicka, J. J. Org. Chem. 1992, 57, 2320.
8. For the preparation of MBH bromides, see: (a) Das, B.; Damodar, K.; Bhunia, N.; Shashikanth, B. Tetrahedron Lett. 2009, 50, 2072. (b) Basavaiah, D.; Reddy, K. R.; Kumaragurubaran, N. Nat. Protoc. 2007, 2, 2665. (c) Das, B.; Banerjee, J.; Ravindranath, N. Tetrahedron 2004, 60, 8357. (d) Gowrisankar, S.; Kim, S. H.; Kim, J. N. Bull. Korean Chem. Soc. 2009, 30, 726 and further references cited therein. (e) Ferreira, M.; Fernandes, L.; Sa, M. M. J. Braz. Chem. Soc. 2009, 20, 564. (f) Fernandes, L.; Bortoluzzi, A. J.; Sa, M. M. Tetrahedron 2004, 60, 9983. (g) Basavaiah, D.; Hyma, R. S.; Padmaja, K.; Krishnamacharyulu, M. Tetrahedron 1999, 55, 6971. (h) Yadav, J. S.; Subba Reddy, B. V.; Madan, C. New J. Chem. 2001, 25, 1114.
9. For the introduction of a nucleophile at the secondary position of MBH adducts via a DABCO salt, see: (a) Kim, S. H.; Kim, S. H.; Lee, H. J.; Kim, J. N. Bull. Korean Chem. Soc. 2012, 33, 2079. (b) Chung, Y. M.; Gong, J. H.; Kim, T. H.; Kim, J. N. Tetrahedron

Lett. 2001, 42, 9023. (c) Kim, J. N.; Lee, H. J.; Lee, K. Y.; Gong, J. H. Synlett 2002, 173. (d) Gong, J. H.; Kim, H. R.; Ryu, E. K.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 789. (e) Baidya, M.; Remennikov, G. Y.; Mayer, P.; Mayr, H. Chem. Eur. J. 2010, 16, 1365. (f) Cui, H.-L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y.-C. Angew. Chem. Int. Ed. 2009, 48, 5737. (g) Li, J.; Wang, X.; Zhang, Y. Tetrahedron Lett. 2005, 46, 5233. (h) Singh, V.; Yadav, G. P.; Maulik, P. R.; Batra, S. Tetrahedron 2008, 64, 2979.
10. For a base-catalyzed rearrangement between alkenylphosphonate and allylphosphonate, see: (a) Kiddle, J. J.; Babler, J. H. J. Org. Chem. 1993, 58, 3572. (b) Modro, A. M.; Modro, T. A. Can. J. Chem. 1988, 66, 1541. (c) Solberghe, G. F.; Marko, I. E. Tetrahedron Lett. 2002, 43, 5061. (d) Shen, R.; Jiang, X.; Ye, W.; Song, X.; Liu, L.; Lao, X.; Wu, C. Tetrahedron 2011, 67, 5610.
11. For the coupling constant $\left(J_{\mathrm{PC}}\right)$ of alkenylphosphonates, see: (a) Konno, T.; Kinugawa, R.; Morigaki, A.; Ishihara, T. J. Org. Chem. 2009, 74, 8456. (b) Quntar, A. A. A.; Melman, A.; Srebnik, M. J.

Org. Chem. 2002, 67, 3769.
12. For the formation of a phosphonium salt of MBH adducts and their synthetic applications, see: (a) Martelli, G.; Orena, M.; Rinaldi, S. Eur. J. Org. Chem. 2011, 7199. (b) Park, H.; Cho, C.-W.; Krische, M. J. J. Org. Chem. 2006, 71, 7892. (c) Cho, C.-W.; Kong, J.-R.; Krische, M. J. Org. Lett. 2004, 6, 1337. (d) Cho, C.-W.; Krische, M. J. Angew. Chem. Int. Ed. 2004, 43, 6689. (e) Kwon S.-H.; Cho, C.-W. Bull. Korean Chem. Soc. 2008, 29, 1835.
13. For the Diels-Alder reaction of 1,3-dienes prepared from the MBH adducts, see: (a) Hoffmann, H. M. R.; Rabe, J. Angew. Chem. Int. Ed. 1983, 22, 795. (b) Poly, W.; Schomburg, D.; Hoffmann, H. M. R. J. Org. Chem. 1988, 53, 3701. (c) Basavaiah, D.; Pandiaraju, S.; Sarma, P. K. S. Tetrahedron Lett. 1994, 35, 4227. (d) Spino, C.; Crawford, J.; Cui, Y.; Gugelchuk, M. J. Chem. Soc., Perkin Trans. 2 1998, 1499. (e) Xu, S.; Chen, R.; Qin, Z.; Wu, G.; He, Z. Org. Lett. 2012, 14, 996.

