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The bound state wave functions for all the known exactly solvable potentials can be expressed in terms of

orthogonal polynomials because the polynomials always satisfy the boundary conditions with a proper weight

function. The orthogonality of polynomials is of great importance because the orthogonality characterizes the

wave functions and consequently the quantum system. Though the orthogonality of orthogonal polynomials

has been known for hundred years, the known orthogonality is found to be inadequate for polynomials

appearing in some exactly solvable potentials, for example, Ginocchio potential. For those potentials a more

general orthogonality is defined and algebraically derived. It is found that the general orthogonality is valid

with a certain constraint and the constraint is very useful in understanding the system.
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Introduction

Nowadays it is a textbook knowledge that there are

exactly solvable one-dimensional quantum systems whose

wave functions are orthogonal polynomials. The one-

dimensional systems are almost trivially simple to solve but

their implications for understanding the quantum chemistry

are immense. The classical orthogonal polynomials include

the Jacobi polynomials, the Hermite polynomials, the Laguerre

polynomials, the Legendre polynomials and so on. For ex-

ample, the harmonic oscillator potential, which is frequently

used to determine harmonic vibrational frequencies of a

molecule, has wave functions of the Hermite polynomials

(Hn(z)). The wave functions of rotational motion of a rigid

body involve the associated Legendre polynomials ( ).

The associated Laguerre polynomials ( ) are used for

Coulomb potential (e.g. hydrogen atom) and also for Morse

potential (e.g. anharmonic vibrational motion).1

The orthogonal polynomials are, as its name implicates,

orthogonal to each other with a proper weight function. The

bound sate wave functions are expressed in terms of the

orthogonal polynomials. The orthogonality of wave functions

for a bound state ensures the existence of the state, which

helps one to find or characterize the bound states of a system.

Mathematically the classical orthogonal polynomials fn(z)

are solutions to the following differential equation2

 (1)

where the functions g2(z) and g1(z) are independent of n and

an is a constant depending on n, the degree of function fn(z).

n is a nonnegative integer, i.e. n = 0, 1, 2,... This form of

differential equation (sometimes called Sturm-Liouville

equation) can have solution functions fn(z) when particular

forms of g2(z), g1(z), and an are provided. There are basically

three types of solution functions, i.e. polynomials. The set of

g2(z) = 1−z2, g1(z) = β−α−(α + β + 2)z, and an = n(n + α + β

+ 1) produces solution functions of , called

the Jacobi polynomials. The associated Laguerre poly-

nomials  with g2(z) = z, g1(z) = α + 1 − z, and

an = n, and the Hermite polynomials  with

g1(z) = 1, g1(z) = −2z, and an = 2n. The well known poly-

nomials like Legendre, Laguerre, Chevyshev, or Gegenbauer

polynomials are subclasses of one of the three basic types of

polynomials.

The polynomials fn(z) are called the orthogonal polynomials

if

,  (2)

on the interval , with respect to the weight function

w(z), 

. (3)

This ‘usual orthogonality’ (Eqs. (2) and (3)) has been known

for a long time and widely used to characterize the properties

of fn(z). 

For example, the usual orthogonality for the associated

Laguerre polynomials is explicitly, from Eqs. (2) and (3),

 (4)

where α is a constant. Note that  and  are

solutions to the differential equation (Eq. 1) with the same

α. Now a question of interest is if  and  are

orthogonal to each other when . The new ortho-

gonality for the associated Laguerre polynomials may look

like

.  (5)
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be written as in the universal form of 
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The polynomials are denoted as  instead of fn(z) in

order to show α-dependence of the polynomials explicitly.

Obviously the general orthogonality is not applicable to

polynomials like the Hermite polynomials which do not

have a constant α in its differential equation.

For a long time the ‘general orthogonality’ has not attract-

ed much attention simply because a potential requiring the

general orthogonality was not encountered. To our know-

ledge Ginocchio first introduced the general orthogonality

but he presented it only for the Gegenbauer polynomials

without detailed mathematical proof.3 In the present work

the general orthogonality for any polynomials depending on

a constant is derived without any approximation. Two

examples of the associated Laguerre and the Gegenbauer

polynomials are presented in order to show the importance

of the general orthogonality and its relationship with Morse

potential and Ginocchio potential which are frequently used

for real chemical or physical quantum systems.

Derivation of General Orthogonality

When , obviously there is no relationship between

 and .  belongs to the set of { (z); n =

0,1,2,...} and  belonging to { (z); n = 0,1,2,...}.

The two sets are distinct from each other. Therefore, if a

general orthogonality Eq. (6) should exist, the two constants

α and α' should be related to each other. From our previous

study on the determination of Ginocchio potential,4 we

learned that a proper relationship between the constants α

and α' could be obtained if both α and α' depend on n.

Therefore, α in (z) is set to be αn, i.e. (z) = (z)

and α' in (z)  is set to be αm, i.e. (z) = (z),

which unambiguously exhibits the n-dependence of α.

α always appears in the g1(z) term in Eq. (1) and is no

longer independent of n so that g1(z;n) notation is used. Now

the differential equation of interest is

.  (7)

It is well known that the eigenfunctions of Schrödinger

equation are always orthogonal. To exploit this fact, let’s

transform Eq. (7) to a form of Schrödinger equation.

Let

,  (8)

then Eq. (7) is 

(9)

where  and , etc. Here

 and  are any arbitrary functions.

Further transformation of Eq. (9) using

 (10)

yields the equation of

(11)

.

As mentioned before, two constants α(=αn) and α'(=αm)

should be related to each other. Let’s define a new function

V(z) as

 (12)

Here En is a constant depending on n and more importantly

the function V(z) is assumed to be independent of n. Eq. (12)

can be rewritten as

.

(13)

The n-independence of V(z) (or equivalently n-independence

of ϕ(z)) guarantees and produces the relationship between α

and α'. We call it ‘Constraint 1’. This constraint will be

clarified by examining the examples in the next section.

Inserting Eq. (12) into Eq. (11), one obtains

. (14)

Let ϕ(z) be a square of the derivative of z with respect to x,

i.e.

.  (15)

Since a function is replaced with a derivative, the function

ϕ(z) should be smooth and continuous (without singularity)

through the interval . This condition brings about

another constraint (Constraint 2). Inserting Eq. (15) into Eq.

(14), one obtains the Schrödinger equation, i.e.
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 are eigenfunctions of the Schrödinger equation (Eq.

16) so that  are always orthogonal, i.e., for  (or

),

 (17)

where . Using Eqs. (8), (10) and (15),

Eq. (17) can be rewritten as

.

(18)

Eq. (18) is a new orthogonality which we call the ‘general

orthogonality’.

Therefore, the final form of general orthogonality is

 (19)

where

 (20)

and  in Eq. (13). Recall that the above orthogonality

is valid when the two constraints are satisfied, i.e., combin-

ing Constraints 1 and 2, the function ϕ(z) (Eq. 13) should be

independent of n and smoothly continuous on [a,b]. When

g1(z;n) = g1(z), i.e. g1(z) is independent of n, one immedi-

ately sees that the ‘usual orthogonality’ (Eqs. 2 and 3) is

recovered.

We would like to mention an interesting notion emerging

from the above derivation process. As well known, the

quantum mechanical interpretation of the Schrödinger

equation (Eq. 16) is that V(x) is a potential function, Ψn(x)

wave functions, and En eigenenergies. It implies that once a

differential equation of the form (Eq. 1) is exactly solved,

the Schrödinger equation for a quantum system having a

potential V(x) can be exactly solved. A detailed work on this

subject will be reported in the near future.

Usage of General Orthogonality

Let us apply the ‘general orthogonality’ to the associated

Laguerre polynomials for which the differential equation is

 (21)

where, , , , and

an = n. The orthogonality limits are a = 0 and .

Evaluating ϕ(z)  (Eq. 13), one obtains

. (22)

Since ϕ(z) should be independent of n (Constraint 1), one

can set

 (23)

where λ is a number (independent of n). Also Constraint 2,

i.e. ϕ(z) should be smooth and continuous, requires that

. The coefficient in front of the bracket in Eq. (22) will

be canceled out later. Then the general orthogonality is, by

evaluating Eqs. (19) and (20),

(24)

where

.  (25)

Eq. (25) is a constraint determined by using Eq. (23). Recall

that  and .

The most well known example of a potential having the

associated Laguerre polynomials as wave functions is Morse

potential. The eigenfunctions of Morse potential have been

correctly assumed to be orthogonal since the pioneering

work of Morse.5 In the present work we have explicitly shown

how the associated Laguerre polynomials can be orthogonal

even when .

Ginocchio found a new class of exactly solvable potentials

called ‘Ginocchio potentials’ which resemble the potentials

appearing in the mean field study of an atomic nucleus.3,6

Due to its formal simplicity Ginocchio potentials have been

utilized widely. For example, they were used to test various

theoretical approximations involving one dimensional pot-

entials.7,8 Furthermore Ginocchio first introduced the ‘general

orthogonality’ and its exact form for Ginocchio potentials.3

The wave functions for Ginocchio potentials are the Gegen-

bauer polynomials. Now we drive the orthogonality by using

our general form of orthogonality, Eqs. (19) and (20). For the

Gegenbauer polynomials, , ,

, and . The orthogo-

nality limits are a = −1 and b = 1. Evaluating ϕ(z) (Eq. 13),

one obtains

.

(26)

Again ϕ(z) should be independent of n (Constraint 1), i.e.

(27)

where λ is a number. Also Constraint 2 requires that λ2 > 0.

The general orthogonality is, by evaluating Eqs. (19) and

(20),
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(28)

where

= .  (29)

It is the exactly same form as the general orthogonality for

Gegenbauer polynomials presented in Ginocchio’s work.3 

What is the constant λ? When α = α' and , Eq. (28)

becomes

.  (30)

It is the usual orthogonality for the Gegenbauer polynomials

which are the wave functions for a certain potential, for

example, Scarf I potential. Recall that Scarf I potential does

not have the λ in it.7 Ginocchio potentials whose wave

functions are also the Gegenbauer polynomials have the λ

(as an extra parameter) in it. The present derivation clearly

explains why the general orthogonality (Eq. 28) should be

applied to Ginocchio potentials, not the usual orthogonality

(Eq. 30). 

We have shown how the ‘general orthogonality’ for the

associated Laguerre and the Gegenbauer polynomials can be

determined by using the general form in Eqs. (19) and (20).

It clearly confirms that there exists the ‘general ortho-

gonality’ for certain polynomials. Probably the application

of this formalism to Jacobi polynomials  is very

interesting because they have two constants α and β. How-

ever, we do not discuss about it at this moment because the

most general form of potentials having Jacobi polynomials

in their wave functions is not known yet even though various

(but particular) forms of potentials having Jacobi poly-

nomials have been reported.7,9

Conclusion

The general orthogonality for certain orthogonal poly-

nomials is derived (Eqs. 19 and 20). The orthogonality is

found to be valid when a certain constraint (or requirement)

is satisfied, e.g. Eq. (25) for the associated Laguerre poly-

nomials or Eq. (29) for the Gegenbauer polynomials. The

constraint is related to the eigenenergies En and the wave

functions Ψn(x) of the corresponding Schrödinger equation

(Eq. 16), which, in turn, provides a clue to finding the

exactly solvable potential V(x). Another words, for some

exactly solvable potentials the ‘usual orthogonality’ is not

valid, instead the ‘general orthogonality’ condition should

be used.

Finally we would like to point out two interesting ques-

tions unanswered in the present work. The first question is −
Can the general orthogonality for Jacobi polynomials be

similarly derived? Since there are various exactly solvable

potentials having Jacobi-like polynomials, the question

should be answered. The second question is on ϕ(z), i.e. Eq.

(15). The derivative function has been assumed to be indepen-

dent of n so that we could find an algebraic expression for

the constraint. If the derivative function ϕ(z) depends on n,

will one still be able to determine or find an expression for

the constraint? The answers to the two questions are perhaps

“yes”. A continuing study on the questions is under way.
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