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Rate equations are exactly solved for the reversible consecutive reaction of the first-order and the time-

dependence of concentrations is analytically determined for species in the reaction. With the assumption of

pseudo first-order reaction, the calculation applies and determines the concentration of product accurately and

explicitly as a function of time in the unimolecular decomposition of Lindemann and in the enzyme catalysis

of Michaelis-Menten whose rate laws have been approximated in terms of reactant concentrations by the

steady-state approximation.
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Introduction 

Mechanisms and rate laws of most chemical reactions can

be described based on reversible, consecutive or parallel

processes whose reaction rates are determined in detail as

functions of time provided that they consist of the first-order

or pseudo first-order steps. Concentrations in terms of time

for species involved in these simple processes are easily

obtained mathematically and the exact results are found in

usual chemical kinetics texts. However many realistic reac-

tions in fact contain the variety of combinations of the three

rudimentary processes aforementioned and this complicates

solving rate equations analytically and makes it difficult

determining time-dependence of rates accurately. Approxi-

mate methods thus have been developed and introduced to

handle these reactions. A typical example is the steady-state

approximation (SSA) which is often used to describe

reactions in which reversible processes are combined with

consecutive steps. It has been developed from the first-order

reversible consecutive reaction which is represented by

. If the rate of consumption of B is much

greater than its rate of formation  in the reaction

scheme, the concentration of B may be presumed to change

little with time and can be estimated in terms of reactant

concentration from the assumption. The overall rate of reac-

tion is then evaluated using the approximate concentration

without detailed integration of rate equations. This simple

but efficient technique is widely applied in reactions consist-

ing with many steps to determine rates approximately. Ex-

amples are the unimolecular decomposition known for Lin-

demann mechanism and the enzyme catalysis of Michaelis-

Menten.1 

The rate of reaction , if it is obtained

fully as a function of time, can be extended under the pseudo

first-order reaction condition to precisely determine the

time-dependent behavior of reactions obeying mechanism of

Lindemann or of Michaelis-Menten. Analytical solution to

the rate equations of these reactions, however, has not been

reported and the detailed time-dependence of concentrations

is not known yet within the author's knowledge.

In this work, rate equations of the first-order reversible

consecutive reaction are exactly solved and two sample

calculations are performed with different set of rate con-

stants to show how concentrations depend on time in detail.

The derivations are applied to reactions of the named mech-

anisms to calculate concentrations of products analytically

and are used to check the approximate rate laws by SSA for

validity and limitations. Then a brief summary concludes the

article.

Theoretical Development

Rate of Reaction . Rate equations of

species involved in the reversible consecutive reaction are

given 

, (1)

where [A]0 = [A] + [B] + [C]. To solve Eq. (1), y(t) is

defined as the ratio of concentrations of B over A

, (2)

which satisfies the differential equation 

. (3)

With a few algebraic manipulations and using ΔF = −(k1 − k
−1

− k2)
2 − 4k1k−1, Eq. (3) can be integrated to yield2 
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. (4)

Since we assume that the initial concentration of A is [A]0

and that [B]0 = [C]0 = 0, y(0) is identified to be equal to 0.

The rate equation of A is changed by substituting Eqs. (2)

and (4) into the first differential equation of Eq. (1) 

(5)

The solution to this equation gives the concentration of A as

a function of time 

.

(6)

with . Concentration of B is derived from

Eqs. (2), (4) and (6)

(7)

and by mass balance, [C](t) is 

(8)

This development thus analytically determines the concent-

rations and reproduces corresponding results of the con-

secutive reaction without the reverse step by setting k
−1 = 0.

When k2 >> k1, Eq. (7) reduces to

,  (9)

which yields , the steady-state condition for inter-

mediate B. 

Based on the derivations, two sample calculations are

done with different set of rate constants and results are

shown in Figure 1 and Figure 2. Exact solution for k1 > k
−1

>> k2 is shown in Figure 1 where the intermediate B rapidly

reaches a concentration close to [A]0 and then slowly

decreases. SSA is not available and is invalid since [B] is

held substantial for a long time. Eqs. (6)-(8) can only

provide with exact concentrations as functions of time. 

Figure 2 shows concentrations for k2 >> k1  in which both

the rate of formation and the concentration of B are close to

0 during the reaction. This meets the condition under which

SSA may be considered appropriate. But the concentration

of B cannot be determined accurately because the initial rise

of [B] is not adequately produced by the approximation. 

Time-Dependent Behavior of Simple Catalytic Reactions.

Typical examples of the use of SSA are the unimolecular

decomposition of Lindemann and the enzyme catalysis of

Michaelis-Menten. And these reactions contain substances

which are neither produced nor consumed in the process,

namely, catalysts. Since the concentrations of catalysts may

change little during the reaction, accurate rate behavior can

be described by the previous derivations under the pseudo

first-order condition. 

Consider the unimolecular decomposition reaction of

Lindemann by whom the mechanism was simply proposed

to be 

A + M 
 
 A* + M

A *  P, (10)

where M represents the collision partner which can act to

energize reactant A. M may be regarded as a catalyst and its

concentration is assumed to maintain constant. Cole and

Wilder3 presented an approximate solution of the more
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Figure 1. Concentration of A, B and C calculated by Eqs. (6)-(8)
with k1 = 1.0 × 10−4, k

−1 = 1.0 × 10−5, and k2 = 1.0 × 10−6.

Figure 2. Concentration of A, B and C calculated by Eqs. (6)-(8)
with k1 = 1.0 × 10−5, k

−1 = 1.0 × 10−4, and k2 = 1.0 × 10−4.
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general three-step Lindemann model, but the exact solution

to rate equations of the above scheme has not been reported

yet. 

Rate equations for the reaction are solved analytically in

this work and the concentration of product P is obtained as

follows; 

,

(11)

in which kM = K1 + K
−1 + k2 and ΔM = −(K1 − k2 − K

−1)
2 −

4K1K−1. Rate constants for the pseudo first-order steps are

replaced with K1= k1[M] and K
−1 = k

−1[M] respectively

where [M] is included as a constant parameter. The con-

centration, [P](t) thus obtained, demonstrates accurate time-

dependence of the concentration of decomposition product

that can not be determined by rate laws of SSA. When k2 >>

K1 and t is large, the result of SSA would be reproduced as

.

The second reaction of example is the simple enzyme

catalysis of Michaelis-Menten 

E + S 
 
 X

X   P + E, (12)

Here E and S represent an enzyme and a substrate respec-

tively. Provided that the concentration of the enzyme is

constant, the product concentration [P](t) is again explicitly

determined as

,

(13)

where kE = K1 + k
−1 + k2, ΔE = −(K1 − k2 − k

−1)
2 − 4K1k−1, and

K1 = k1[E]0 respectively. Figure 3 shows the time-depen-

dence of concentrations determined by Eq. (13) and by

corresponding formulas which is in excellent agreement

with exact numerical calculation.4 

Conclusion

In the present work, rate equations are exactly solved for

the reversible consecutive reaction of the first-order and the

concentrations of species are analytically determined in the

reaction. With the assumption of pseudo first-order reaction,

the calculation directly applies and determines the concent-

ration of product as a function of time in the unimolecular

decomposition and in the enzyme catalysis whose rate laws

have been obtained approximately only in terms of reactant

concentrations by SSA. The current calculation reproduces

the steady-state results for these reactions when t is large and

confirms that the approximation is only valid at the time

long after reactions started. 
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Figure 3. Concentration of S, X, and P that are determined
analytically using the same rate constants and initial concentration
as those of Ref. 3. Concentration of enzyme is assumed to
maintain constant.


