DOI QR코드

DOI QR Code

CRITICAL FUJITA EXPONENT FOR A FAST DIFFUSIVE EQUATION WITH VARIABLE COEFFICIENTS

  • Li, Zhongping (College of Mathematic and Information China West Normal University) ;
  • Mu, Chunlai (College of mathematics and Statistics Chongqing University) ;
  • Du, Wanjuan (College of Mathematic and Information China West Normal University)
  • Received : 2011.05.12
  • Published : 2013.01.31

Abstract

In this paper, we consider the positive solution to a Cauchy problem in $\mathbb{B}^N$ of the fast diffusive equation: ${\mid}x{\mid}^mu_t={div}(\mid{\nabla}u{\mid}^{p-2}{\nabla}u)+{\mid}x{\mid}^nu^q$, with nontrivial, nonnegative initial data. Here $\frac{2N+m}{N+m+1}$ < $p$ < 2, $q$ > 1 and 0 < $m{\leq}n$ < $qm+N(q-1)$. We prove that $q_c=p-1{\frac{p+n}{N+m}}$ is the critical Fujita exponent. That is, if 1 < $q{\leq}q_c$, then every positive solution blows up in finite time, but for $q$ > $q_c$, there exist both global and non-global solutions to the problem.

Keywords

References

  1. K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl. 243 (2000), no. 1, 85-126. https://doi.org/10.1006/jmaa.1999.6663
  2. E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
  3. A. Friedman and J. B.McLeod, Blow-up of positive solutions of semilinear heat equation, Indiana Univ. Math. J. 34 (1985), no. 2, 425-447. https://doi.org/10.1512/iumj.1985.34.34025
  4. H. Fujita, On the blowing up of solutions of the Cauchy problem for ${u_t} = {\Delta}u + {u^{1+{\alpha}}}$, J. Fac. Sci. Univ. Tokyo Sec. I 13 (1966), 109-124.
  5. V. A. Galaktionov, Conditions for global nonexistence and localization for a class of nonlinear parabolic equations, Comput. Math. Math. Phys. 23 (1983), 35-44. https://doi.org/10.1016/S0041-5553(83)80007-X
  6. V. A. Galaktionov, Blow-up for quasilinear heat equations with critical Fujita's exponents, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 3, 517-525. https://doi.org/10.1017/S0308210500028766
  7. V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, and A. A. Samarskii, On unbounded solutions of the Cauchy problem for the parabolic equation ${u_t} = {\nabla}({u^{\sigma}}{\nabla}u)+{u^B}$, Soviet Phys. Dokl. 25 (1980), 458-459.
  8. V. A. Galaktionov, Blowup in Quasilinear Parabolic Equations, De Gruyter Expositions in Mathematics, Springer, Berlin, 1995.
  9. V. A. Galaktionov and H. A. Levine, A general approach to critical Fujita exponents and systems, Nonlinear Anal. 34 (1998), no. 7, 1005-1027. https://doi.org/10.1016/S0362-546X(97)00716-5
  10. K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad. 49 (1973), 503-505. https://doi.org/10.3792/pja/1195519254
  11. Q. Huang, K. Mochizuki, and K. Mukai, Life span and asymptotic behavior for a semilinear parabolic system with slowly decaying initial values, Hokkaido Math. J. 27 (1998), no. 2, 393-407. https://doi.org/10.14492/hokmj/1351001291
  12. H. A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev. 32 (1990), no. 2, 262-288. https://doi.org/10.1137/1032046
  13. Z. P. Li and C. L. Mu, Critical exponents for a fast diffusive polytropic filtration equation with nonlinear boundary flux, J. Math. Anal. Appl. 346 (2008), no. 1, 55-64. https://doi.org/10.1016/j.jmaa.2008.05.035
  14. Z. P. Li, C. L. Mu, and L. Xie, Critical curves for a degenerate parabolic equation with multiple nonlinearities, J. Math. Anal. Appl. 359 (2009), no. 1, 39-47. https://doi.org/10.1016/j.jmaa.2009.05.025
  15. Z. P. Li, C. L. Mu, and Z. J. Cui, Critical curves for a fast diffusive polytropic filtration system coupled via nonlinear boundary flux, Z. Angew. Math. Phys. 60 (2008), no. 2, 284-298.
  16. A. V. Martynenko and A. F. Tedeev, The Cauchy problem for a quasilinear parabolic equation with a source and nonhomogeneous density, Comput. Math. Math. Phys. 47 (2007), no. 2, 238-48. https://doi.org/10.1134/S096554250702008X
  17. A. V. Martynenko and A. F. Tedeev, On the behavior of solutions to the Cauchy problem for a degenerate parabolic equation with inhomogeneous density and a source, Comput. Math. Math. Phys. 48 (2008), no. 7, 1145-1160. https://doi.org/10.1134/S0965542508070087
  18. K. Mochizuki and K. Mukai, Existence and nonexistence of global solutions to fast diffusions with source, Methods Appl. Anal. 2 (1995), no. 1, 92-102.
  19. K. Mochizuki and R. Suzuki, Critical exponent and critical blow-up for quasilinear parabolic equations, Israel J. Math. 98 (1997), no. 1, 141-156. https://doi.org/10.1007/BF02937331
  20. Y. W. Qi, Critical exponents of degenerate parabolic equations, Sci. China Ser. A 38 (1995), no. 10, 1153-1162.
  21. Y. W. Qi, The critical exponents of parabolic equations and blow-up in ${\mathbb{R}^N}$, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 1, 123-136. https://doi.org/10.1017/S0308210500027190
  22. Y. W. Qi, The global existence and nonuniqueness of a nonlinear degenerate equation, Nonlinear Anal. 31 (1998), no. 1-2, 117-136. https://doi.org/10.1016/S0362-546X(96)00298-2
  23. Y. W. Qi and H. A. Levine, The critical exponent of degenerate parabolic systems, Z. Angew. Math. Phys. 44 (1993), no. 2, 249-265. https://doi.org/10.1007/BF00914283
  24. Y. W. Qi and M. X. Wang, Critical exponents of quasilinear parabolic equations, J. Math. Anal. Appl. 267 (2002), no. 1, 264-280. https://doi.org/10.1006/jmaa.2001.7771
  25. A. E. Scheidegger, The Physics of Flow Through Porous Media, third ed., Buffalo, Toronto, 1974.
  26. C. P. Wang and S. N. Zheng, Critical Fujita exponents of degenerate and singular parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no. 2, 415-430. https://doi.org/10.1017/S0308210500004637
  27. C. P. Wang, S. N. Zheng, and Z. J. Wang, Critical Fujita exponents for a class of quasilinear equations with homogeneous Neumann boundary data, Nonlinearity 20 (2007), no. 6, 1343-1359. https://doi.org/10.1088/0951-7715/20/6/002
  28. Z. J. Wang, J. X. Yin, C. P. Wang, and H. Gao, Large time behavior of solutions to Newtonian filtration equation with nonlinear boundary sources, J. Evol. Equ. 7 (2007), no. 4, 615-648. https://doi.org/10.1007/s00028-007-0324-9
  29. F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), no. 1-2, 29-40. https://doi.org/10.1007/BF02761845
  30. Z. Q. Wu, J. N. Zhao, J. X. Yin, and H. L. Li, Nonlinear Diffusion Equations, Word Scientific, Singapore, 2001.
  31. Y. B. Zeldovich and Y. P. Raizer, Physics and shock waves and high-temperature hydrodynamic phenomena, Moscow, vol. 2, Academic Press, New York, 1967.
  32. S. N. Zheng and C. P. Wang, Large time behaviour of solutions to a class of quasilinear parabolic equations with convection terms, Nonlinearity 21 (2008), no. 9, 2179-2200. https://doi.org/10.1088/0951-7715/21/9/015

Cited by

  1. Existence and nonexistence of global solutions for a semilinear reaction–diffusion system vol.445, pp.1, 2017, https://doi.org/10.1016/j.jmaa.2016.07.067