DOI QR코드

DOI QR Code

ON SPACES OF WEAK* TO WEAK CONTINUOUS COMPACT OPERATORS

  • Kim, Ju Myung (Department of Mathematical Sciences Seoul National University)
  • Received : 2011.07.09
  • Published : 2013.01.31

Abstract

This paper is concerned with the space $\mathcal{K}_{w^*}(X^*,Y)$ of $weak^*$ to weak continuous compact operators from the dual space $X^*$ of a Banach space X to a Banach space Y. We show that if $X^*$ or $Y^*$ has the Radon-Nikod$\acute{y}$m property, $\mathcal{C}$ is a convex subset of $\mathcal{K}_{w^*}(X^*,Y)$ with $0{\in}\mathcal{C}$ and T is a bounded linear operator from $X^*$ into Y, then $T{\in}\bar{\mathcal{C}}^{{\tau}_{\mathcal{c}}}$ if and only if $T{\in}\bar{\{S{\in}\mathcal{C}:{\parallel}S{\parallel}{\leq}{\parallel}T{\parallel}\}}^{{\tau}_{\mathcal{c}}}$, where ${\tau}_{\mathcal{c}}$ is the topology of uniform convergence on each compact subset of X, moreover, if $T{\in}\mathcal{K}_{w^*}(X^*, Y)$, here $\mathcal{C}$ need not to contain 0, then $T{\in}\bar{\mathcal{C}}^{{\tau}_{\mathcal{c}}}$ if and only if $T{\in}\bar{\mathcal{C}}$ in the topology of the operator norm. Some properties of $\mathcal{K}_{w^*}(X^*,Y)$ are presented.

Keywords

References

  1. R. Aron, M. Lindstr¨om, W. M. Ruess, and R. Ryan, Uniform factorization for compact sets of operators, Proc. Amer. Math. Soc. 127 (1999), no. 4, 1119-1125. https://doi.org/10.1090/S0002-9939-99-04619-5
  2. P. G. Casazza, Approximation properties, Handbook of the geometry of Banach spaces, Vol. I, 271-316, North-Holland, Amsterdam, 2001.
  3. C. Choi and J. M. Kim, Hahn-Banach theorem for the compact convergence topology and applications to approximation properties, Houston J. Math. 37 (2011), 1157-1164.
  4. C. Choi and J. M. Kim, Locally convex vector topologies on B(X, Y ), J. Korean Math. Soc. 45 (2008), no. 6, 1677-1703. https://doi.org/10.4134/JKMS.2008.45.6.1677
  5. M. Feder and P. Saphar, Spaces of compact operators and their dual spaces, Israel J. Math. 21 (1975), no. 1, 38-49. https://doi.org/10.1007/BF02757132
  6. T. Figiel and W. B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc. 41 (1973), 197-200. https://doi.org/10.1090/S0002-9939-1973-0341032-5
  7. G. Godefroy and P. Saphar, Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (1988), no. 4, 672-695.
  8. A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc. 1955 (1955), no. 16, 140 pp.
  9. P. Harmand, D. Werner, and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Mathematics, 1547. Springer-Verlag, Berlin, 1993.
  10. N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-978. https://doi.org/10.1007/BF01432152
  11. A. Lima, O. Nygaard, and E. Oja, Isometric factorization of weakly compact operators and the approximation property, Israel J. Math. 119 (2000), 325-348. https://doi.org/10.1007/BF02810673
  12. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Springer, Berlin, 1977.
  13. R. E. Megginson, An Introduction to Banach Space Theory, Springer, New York, 1998.
  14. K. Mikkor and E. Oja, Uniform factorization for compact sets of weakly compact operators, Studia Math. 174 (2006), no. 1, 85-97. https://doi.org/10.4064/sm174-1-7
  15. R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, Berlin, 2002.

Cited by

  1. A bounded approximation of weakly compact operators vol.401, pp.1, 2013, https://doi.org/10.1016/j.jmaa.2012.11.024
  2. Unconditional almost squareness and applications to spaces of Lipschitz functions vol.451, pp.1, 2017, https://doi.org/10.1016/j.jmaa.2017.02.004