DOI QR코드

DOI QR Code

솔레노이드 액추에이터의 비선형 동적응답에 대한 구조최적설계

Structural Optimization for Nonlinear Dynamic Response of Solenoid Actuator

  • Baek, Seokheum (Department of Mechanical Engineering, Dong-A University) ;
  • Kim, Hyunsu (Department of Mechanical Engineering, Dong-A University) ;
  • Jang, Deukyul (Department of Mechanical Engineering, Kangwon National University) ;
  • Lee, Seungbeom (Research & Development Center of UNICK Corp.) ;
  • Kwon, Youngseok (Research & Development Center of UNICK Corp.) ;
  • Ro, Euidong (Research & Development Center of UNICK Corp.) ;
  • Lee, Changhoon (Research & Development Center of UNICK Corp.)
  • 투고 : 2012.03.26
  • 심사 : 2012.08.30
  • 발행 : 2013.01.01

초록

This paper proposes a design optimization approach for core of solenoid actuators by combining optimization techniques with the finite element method (FEM). A solenoid is an important element part which hydraulically controls a transmission system, etc. The demanded feature of the solenoid is that it performs an electromagnetic force output being constant regardless of the stroke and being proportional to coil current. The plunger compresses a spring with a minimum force of 12 N over an 1.7 mm travel. The orthogonal array, analysis of variance (ANOVA) techniques and response surface optimization, are employed to determine the main effects and their optimal design variables. The methodology is demonstrated as a optimization tool for the core design of a solenoid actuator.

키워드

참고문헌

  1. S. N. Yun, D. W. Yun and Y. B. Ham, "Characteristics Analysis of Solenoid Actuator for Common Rail System," Transactions of KSAE, Vol.17, No.6, pp.31-38, 2009.
  2. L. Encica, D. Echeverria, E. A. Lomonova, A. J. A. Vandenput, P. W. Hemker and D. Lahaye, "Efficient Optimal Design of Electromagnetic Actuators Using Space Mapping," Struct. Multidisc. Optim., Vol.33, No.6, pp.481-491, 2007. https://doi.org/10.1007/s00158-006-0054-6
  3. G. S. Lee, H. J. Sung, H. C. Kim and H. W. Lee, "Flow Force Analysis of a Variable Force Solenoid Valve for Automatic Transmissions," ASME J. Fluids Eng., Vol.132, No.3, pp.031103 (1-7), 2010.
  4. W. Gautschi, Orthogonal Polynomials: Applications and Computations, Acta Numerica, Cambridge University Press, 1996.
  5. S. H. Park, Robust Design and Analysis for Quality Engineering, Chapman & Hall, London, 1996.
  6. S. H. Baek, S. S. Cho, H. S. Kim and W. S. Joo, "Trade-off Analysis in Multi-objective Optimization Using Chebyshev Orthogonal Polynomials," J. Mech. Sci. Technol., Vol.20, No.3, pp.366-375, 2006. https://doi.org/10.1007/BF02917519
  7. S. H. Baek, S. S. Cho and W. S. Joo, "Response Surface Approximation for Fatigue Life Prediction and Its Application to Multi-Criteria Optimization with a Priori Preference Information," Trans. of the KSME(A), Vol.33, No.2, pp.114-126, 2009. https://doi.org/10.3795/KSME-A.2009.33.2.114
  8. S. H. Baek, K. M. Kim, S. S. Cho, D. Y. Jang and W. S. Joo, "A Sequential Optimization Algorithm Using Metamodel-Based Multilevel Analysis," Trans. of the KSME(A), Vol.33, No.9, pp.892-902, 2009. https://doi.org/10.3795/KSME-A.2009.33.9.892
  9. J. L. Coulomb and G. Meunier, "Finite Element Implementation of Virtual Work Principle for Magnetic for Electric Force and Torque Calculation," IEEE Transactions on Magnetics, Vol. Mag-2D, No.5, pp.1894-1896, 1984.
  10. M. Gyimesi, D. Lavers, T. Pawlak and D. Ostergaard, "Application of the General Potential Formulation in the $ANSYS^{(R)}$Program," IEEE Transactions on Magnetics, Vol.29, pp. 1345-1347, 1993. https://doi.org/10.1109/20.250647
  11. F. C. Moon, Magneto-Solid Mechanics, New York, John Wiley and Sons, 1984.
  12. Maxwell 14.0, ANSYS Mechanical and Workbench Release 13.0, ANSYS, Inc., 2010.
  13. J. J. More and S. J. Wright, Optimization Software Guide, SIAM Publications, Philadelphia, 1993.
  14. ANSYS, Release 11.0 Documentation, SAS IP, Inc., 2007.