DOI QR코드

DOI QR Code

Production of Glutathione by the Yeast Mutant Saccharomyces cerevisiae Sa59

효모변이주 Saccharomyces cerevisiae Sa59에 의한 glutathione 생성

  • Jang, Hye-Yoon (Department of Food Science and Technology, Kongju National University) ;
  • Oh, Chul-Hwan (Department of Food Science and Technology, Kongju National University) ;
  • Oh, Nam-Soon (Department of Food Science and Technology, Kongju National University)
  • Received : 2013.06.27
  • Accepted : 2013.09.25
  • Published : 2013.12.31

Abstract

The glutathione contents of the selected mutants were investigated and found to be 6.1-15.8 mg/g-DCW. The glutathione content positively correlated with the antioxidant activity of the mutant strains ($R^2$=0.488). Furthermore, the glutathione content of the mutant S. cerevisiae Sa-59 was approximately 38% greater than that of the wild type strain and, therefore, this mutant strain was selected for glutathione production. The volumetric glutathione content in a shaking culture was increased by about 70% compared to the static culture. In addition, the specific glutathione content was increased by ~19%. The volumetric glutathione content and specific glutathione content were increased by approximately 16% and 66%, respectively, when 0.04% glutamate, 0.04% cysteine and 0.04% glycine were added. Furthermore, the highest antioxidant activity was 0.52 as absorbance unit at 700 nm.

Glutathione 생성능이 우수한 효모균주의 획득을 목적으로 Saccharomyces cerevisiae 균주를 변이처리 하였다. 선발된 변이주들의 전체적인 glutathione 함유량은 6.1-15.8 mg/g이었으며, glutathione 함유량과 항산화활성은 비교적 양호한 양의 상관관계($R^2$=0.488)를 보였다. 특히, 변이주 S. cerevisiae Sa59의 glutathione 함유량이 wild type에 비해 약 38% 증가되었으며, 환원력 또한 0.40으로 가장 높아 glutathione 생성을 위한 변이주로 선발하였다. 배양방법에 따른 gluthathione의 부피당 생산성은 진탕배양이 정치배양에 비해 약 70% 증가하였으며, 단위균체량당 glutathione 함유량 또한 진탕배양 했을 때 약 19% 증가하였다. Glucose 농도가 증가함에 따라 건조균체량과 발효에 의한 에탄올 함량은 증가하였으나, glutathione 함유량과 환원력은 감소하는 경향을 나타냈다. Glutamate, cysteine 및 glycine을 각각 0.04% 첨가하였을 때 단위부피 및 단위균체량당 glutathione 함유량이 각각 16%, 66% 증가하였으며, 환원력 또한 0.52로 가장 우수하였다.

Keywords

References

  1. Hopkins FG. On glutathione: A reinvestigation. J. Biol. Chem. 84: 269-320 (1929)
  2. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal. Biochem. 27: 502-522 (1969) https://doi.org/10.1016/0003-2697(69)90064-5
  3. Grant CM, Maclver FH, Dawes IW. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr. Genet. 29: 511-515 (1996) https://doi.org/10.1007/BF02426954
  4. Cha JY, Kim HS, Kang SC, Cho YS. Alcoholic hepatotoxicity suppression in alcohol fed rats by glutathione-enriched yeast FF-8 strain. Food Sci. Biotechnol. 18: 1411-1416 (2009)
  5. Penninckx M. A short review on the role of glutathione in the response of yeast to nutritional, environmental, and oxidative stresses. Enzyme Microb. Tech. 26: 737-742 (2000) https://doi.org/10.1016/S0141-0229(00)00165-4
  6. Li Y, Wei G, Chen J. Glutathione: a review on biotechnological production. Appl. Microbiol. Biot. 66: 233-242 (2004) https://doi.org/10.1007/s00253-004-1751-y
  7. Fernandes L, Steele JL. Glutathione content of lactic acid bacteria. J. Dairy Sci. 76: 1233-1242 (1993) https://doi.org/10.3168/jds.S0022-0302(93)77452-4
  8. Fahey RC, Brown WC, Adams WB, Worsham MB. Occurrence of glutathione in bacteria. J. Bacteriol. 133: 1126-1129 (1978)
  9. Johnson T, Newton GL, Fahey RC, Rawat M. Unusual production of glutathione in actinobacteria. Arch. Microbiol. 191: 89-93 (2009) https://doi.org/10.1007/s00203-008-0423-1
  10. Suzuki T, Yokoyama A, Tsuji T, Ikeshima E, Nakashima K, Ikushima S, Kobayashi C, Yoshida S. Identification and characterization of genes involved in glutathione production in yeast. J. Biosci. Bioeng. 112: 107-113 (2011) https://doi.org/10.1016/j.jbiosc.2011.04.007
  11. Miwa N. Glutathione. JP Patent 51,144,789 (1976)
  12. Miyamoto I, Miwa N. Production of glutathione by immobilized glutathione synthetase. JP Patent 52,051,089 (1977)
  13. Gushima H, Miya T, Murata K, Kimura A. Construction of glutathione- producing strains of Escherichia coli B by recombinant DNA techniques. J. Appl. Biochem. 5: 43-52 (1983)
  14. Kim SU, Yang CI, Min SH, Rhee SH, Kim YB. A study on the extraction and purification of glutathione from yeast. J. Korean Pharm. Sci. 8: 1-10 (1978)
  15. Koh SY, Koo YM. In vitro production of glutathione using yeast ATP regeneration system and recombinant synthetic enzymes from Escherichia coli. Kor. J. Appl. Microbiol. Biotechnol. 26: 213-220 (1998)
  16. Bae IY, Koo SH, Yoo HJ, Kim JM, Bae HA, Jeon EJ, Oh E, Lee DH, Hur BS, Lee HG. Development of a flavor enriched yeast extract with a high glutathione content. Korean J. Food Sci. Technol. 42: 549-553 (2010)
  17. Hamada S, Tanaka H, Sakato K. Process for producing glutathione. EP Patent 0079241 A2 (1982)
  18. Owens CWI, Belcher RV. A colorimetric micro method for the determination of glutathione. Biochem. J. 94: 705-711 (1965)
  19. Oyaizu M. Studies on products of browning reaction: antioxidative activity of products of browning reaction. Jpn. J. Nutr. 44: 307-315 (1986) https://doi.org/10.5264/eiyogakuzashi.44.307
  20. Lee CH, Cha JY, Jun BS, Lee HJ, Lee YC, Choi YL, Cho YS. The antioxidative activity of glutathione enriched extract from Saccharomyces cerevisiae FF-8 in vitro model system. J. Life Sci. 15: 819-825 (2005) https://doi.org/10.5352/JLS.2005.15.5.819
  21. Park JC, Ok M, Cha JY, Cho YS. Isolation and identification of the high glutathione producing Saccharomyecs cerevisiae FF-8 from korean traditional rice wine and optimal producing conditions. J. Korean Soc. Agric. Chem. Biotechnol. 46: 348-352 (2003)
  22. Cho WD, Kim HI, Song JC, Yang HC. Studies on the production of glutathione by microorganism. Korean J. Appl. Microbiol. Bioeng. 6: 75-80 (1978)

Cited by

  1. Identification of Wild Yeast Strains and Analysis of Their β-Glucan and Glutathione Levels for Use inMakgeolliBrewing vol.42, pp.4, 2014, https://doi.org/10.5941/MYCO.2014.42.4.361