DOI QR코드

DOI QR Code

Association of TAP1 and TAP2 Gene Polymorphisms with Hematological Malignancies

  • Ozbas-Gerceker, Filiz (Department of Biology, Section of Molecular Biology, Faculty of Arts and Science, University of Gaziantep) ;
  • Bozman, Nazli (Department of Biology, Section of Molecular Biology, Faculty of Arts and Science, University of Gaziantep) ;
  • Gezici, Sevgi (Department of Biology, Section of Molecular Biology, Faculty of Arts and Science, University of Gaziantep) ;
  • Pehlivan, Mustafa (Department of Internal Medicine Section of Hematology, Faculty of Medicine, University of Gaziantep) ;
  • Yilmaz, Mehmet (Department of Internal Medicine Section of Hematology, Faculty of Medicine, University of Gaziantep) ;
  • Pehlivan, Sacide (Department of Medical Biology, Faculty of Medicine, University of Gaziantep) ;
  • Oguzkan-Balci, Sibel (Department of Medical Biology, Faculty of Medicine, University of Gaziantep)
  • Published : 2013.09.30

Abstract

Transporter associated with antigen presenting (TAP) 1 and TAP2 genes are localized in the major histocompatability complex (MHC) class II region and form a heterodimer playing a key role in endogenous pathways for antigen presentation. Defects of these genes have been reported to be common in different types of cancer. Polymorphisms identified in these loci have also been investigated and reported to be associated with several autoimmune disorders, viral infections and neoplasms. In the present study, for the first time, the allele and genotype frequencies of TAP1-333, TAP2-565, TAP2-651 and TAP2-665 were determined in patients with hematological malignancies (HM) using a PCR-RFLP method and compared with the frequencies in the control group. Our results suggested an association of TAP1-333 polymorphism with multiple myeloma-MM and TAP2-565 polymorphism with chronic lymphoid leukemia-CLL. In addition, it could be concluded that the TAP2-665 GG genotype might be a risk factor for all types of hematological malignancies included in this study.

Keywords

References

  1. Cao B, Tian X, Li Y, et al (2005). LMP7/TAP2 gene polymorphisms and HPV infection in esophageal carcinoma patients from a high incidence area in China. Carcinogenesis, 26, 1280-4. https://doi.org/10.1093/carcin/bgi071
  2. Daniel S, Caillat-Zucman S, Hammer J, Bach JF, van Endert PM (1997). Absence of functional relevance of human transporter associated with antigen processing polymorphism for peptide selection. Immunol, 159, 2350-7.
  3. Deng XL, Chen W, Cai MY, Wei DP (2003). Expression of class I MHC molecule, HSP70 and TAP in human hepatocellular carcinoma. World J Gastroenterol, 9, 1853-5. https://doi.org/10.3748/wjg.v9.i8.1853
  4. Descatha A, Jenabian A, Conso F, Ameille J (2005). Occupational exposures and haematological malignancies: overview on human recent data. Cancer Causes Control, 16, 939-3. https://doi.org/10.1007/s10552-005-2301-3
  5. Di Bernardo MC, Crowther-Swanepoel D, Broderick P, et al (2008). A genome-wide association study identifies sixsusceptibility loci for chronic lymphocytic leukemia. Nat Genet, 40, 1204-10. https://doi.org/10.1038/ng.219
  6. Dissemond J, Gotte P, Mors J, et al (2003). Association of TAP1 downregulation in human primary melanoma lesions with lack of spontaneous regression. Melanoma Res, 13, 253-8. https://doi.org/10.1097/00008390-200306000-00005
  7. Dogru D, Ozbas Gerceker F, Yalcin E, et al (2007). The role of TAP1 and TAP2 gene polymorphism in idiopathic bronchiectasis in children. Pediatr Pulmonol, 42, 237-1. https://doi.org/10.1002/ppul.20560
  8. Feng M, Yin B, Shen T, et al (2009). TAP1 and TAP2 polymorphisms associated with ankylosing spondylitis in genetically homogenous Chinese Han population. Hum Immunol, 70, 257-1. https://doi.org/10.1016/j.humimm.2009.01.028
  9. Fowler NL, Frazer IH (2004). Mutations in TAP genes are common in cervical carcinomas. Gynecol Oncol, 92, 914-1. https://doi.org/10.1016/j.ygyno.2003.11.037
  10. Heemels MT, Ploegh H (1995). Generation, translocation, and presentation of MHC class I-restricted peptides. Annual Review of Biochemistry, 64, 463-1. https://doi.org/10.1146/annurev.bi.64.070195.002335
  11. Harris NL, Jaffe ES, Diebold J, et al (1997). World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting–Airlie House, Virginia, November 1997. J Clin Oncol, 17, 3835-9.
  12. Hodson I, Bock M, Ritz U, et al (2003). Analysis of the structural integrity of the TAP2 gene in renal cell carcinoma. Int J Oncol, 23, 991-9.
  13. Irigaray P, Newby JA, Clapp R, et al (2007). Life style related factors and environmental agents causing cancer: an overview. Biomed Pharmacother, 61, 640-8. https://doi.org/10.1016/j.biopha.2007.10.006
  14. Kiper N, Gerceker F, Utine E, et al (2010). TAP1 and TAP2 gene polymorphisms in childhood cystic echinococcosis. Parasitol Int, 59, 283-5. https://doi.org/10.1016/j.parint.2010.02.012
  15. Koch J, Guntrum R, Heintke S, Kyritsis C, Tampe R (2004). Functional dissection of the transmembrane domains of the transporter associated with antigen process-ing (TAP). J Biol Chem, 279, 10142-7. https://doi.org/10.1074/jbc.M312816200
  16. Marsh SGE, Albert ED, Bodmer WF, et al (2005). Nomenclature for factors of the HL A system, 2004. Tissue Antigens, 65, 301-9. https://doi.org/10.1111/j.1399-0039.2005.00379.x
  17. Mehta AM, Jordanova ES, van Wezel T, et al (2007). Genetic variation of antigen processing machinery components and association with cervical carcinoma. Genes Chromosomes Cancer, 46, 577-6. https://doi.org/10.1002/gcc.20441
  18. Meissner M, Reichert TE, Kunkel M, et al (2005). Defects in the human leukocyte antigen class I antigen processing machinery in head and neck squamous cell carcinoma: association with clinical outcome. Clin Cancer Res, 11, 2552-60. https://doi.org/10.1158/1078-0432.CCR-04-2146
  19. Miller SA, Dykes DD, Polesky HF (1988). A simple salting-out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res, 16, 1215. https://doi.org/10.1093/nar/16.3.1215
  20. Momburg F, Roelse J, Howard, JC, et al (1994). Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature, 367, 648-1. https://doi.org/10.1038/367648a0
  21. Ozbas-Gerceker F, Ozcelik U, Kiper N, et al (2002). Analysis of the modifying effects of TAP 1/2 genes on cystic fibrosis phenotype. Turk J Pediatr, 44, 91-7.
  22. Ozbas-Gerceker F, Ozguc M (2003). Frequencies of TAP1 and TAP2 gene polymorphisms in the anatolian population. Eur J Immunogenet, 30, 97-9. https://doi.org/10.1046/j.1365-2370.2003.00363.x
  23. Powis SJ, Deverson EV, Coadwell WJ, et al (1992). Effect of polymorphism of an MHC-linked transporter on the peptides assembled in a class I molecule. Nature, 357, 211-5. https://doi.org/10.1038/357211a0
  24. Powis SH, Tonks S, Mockridge I, et al (1993). Alleles and haplotypes of the MHC-encoded ABC transporters TAP1 and TAP2. Immunogenetics, 37, 373-80. https://doi.org/10.1007/BF00216802
  25. Quadri SA, Singal DP (1998). Peptide transport in human lymphoblas-toid and tumor cells: effect of transporter associated with antigen presentation (TAP) polymorphism. Immunol Lett, 61, 25-1. https://doi.org/10.1016/S0165-2478(97)00157-0
  26. Racanelli V, Leone P, Frassanito MA, et al (2010). Alterations in the antigen processing-presenting machinery of transformed plasma cells are associated with reduced recognition by CD8+ T cells and characterize the progression of MGUS to multiple myeloma. Blood, 115, 1185-3. https://doi.org/10.1182/blood-2009-06-228676
  27. Seliger B, Ritz U, Abele R, et al (2001). Immune escape of melanoma: first evidence of structural alterations in two distinct components of the MHC class I antigen processing pathway. Cancer Res, 61, 8647-50.
  28. Shinde V, Marcinek P, Rani DS, et al (2013). Genetic evidence of TAP1 gene variant as a susceptibility factor in Indian leprosy patients. Hum Immunol, 74, 803-7. https://doi.org/10.1016/j.humimm.2013.01.001
  29. Spies T, Cerundolo V, Colonna P, et al (1992). Presentation of viral antigen by MHC class I molecules is dependent on a putative peptide transporter heterodimer. Nature, 355, 644-6. https://doi.org/10.1038/355644a0
  30. Sunder SR, Hanumanth SR, Gaddam S, Jonnalagada S, Valluri VL (2011). Association of TAP 1 and 2 gene polymorphisms with human immunodeficiency virus-tuberculosis coinfection. Hum Immunol, 72, 908-1. https://doi.org/10.1016/j.humimm.2011.07.304
  31. Trowsdale J, Hanson I, Mockridge I, et al (1990). Sequences encoded in the class II region of the MHC related to the 'ABC' superfamily of transporters. Nature, 348, 741-4. https://doi.org/10.1038/348741a0
  32. Vinasco J, Fraile A, Nieto A, et al (1998). Analysis of LMP and TAP polymorphisms by poly-merase chain reaction restriction fragment length polymorphism in rheumatoid arthritis. Ann Rheum Dis, 57, 33-7. https://doi.org/10.1136/ard.57.1.33
  33. Wang D, Zhou Y, Ji L, et al (2012). Association of LMP/TAP gene polymorphisms with tuberculosis susceptibility in Li population in china. PLoS One, 7, 33051. https://doi.org/10.1371/journal.pone.0033051
  34. Yang T, Lapinski PE, Zhao H, et al (2005). A rare transporter associated with antigen processing polymorphism overpresented in HLAlow colon cancer reveals the functional significance of the signature domain in antigen processing. Clin Cancer Res, 11, 3614-3. https://doi.org/10.1158/1078-0432.CCR-04-1804

Cited by

  1. Allogeneic Hemopietic Stem Cell Transplants for the Treatment of B Cell Acute Lymphocytic Leukemia vol.15, pp.15, 2014, https://doi.org/10.7314/APJCP.2014.15.15.6127
  2. Genetic association between TAP1 and TAP2 polymorphisms and ankylosing spondylitis: a systematic review and meta-analysis vol.66, pp.8, 2017, https://doi.org/10.1007/s00011-017-1047-1
  3. Being on the Frontline vol.20, pp.3, 2018, https://doi.org/10.1097/NJH.0000000000000433
  4. Genetic characterisation of 19 autosomal STR loci in a population sample from the Southeastern Anatolia Region of Turkey vol.45, pp.2, 2018, https://doi.org/10.1080/03014460.2018.1444202