음향방출 위치표정 기법

Acoustic Emission Source Location Method

한병희, 윤동진(한국표준과학연구원 안전측정센터)

Byeong-Hee Han and Dong Jin Yoon (E-mail:djyoon@kriss.re.kr)

1. 서 론

음향방출(acoustic emission) 기술은 일반적으로 다른 비파괴시험 방법과 달리 설비나 구조물의 운전 중에도 적용이 가능한 장점을 가지고 있으 며, 결함 존재의 유무를 검출할 뿐만 아니라 그 위치까지 알려줄 수 있는 큰 장점이 있다. 따라 서 다양한 분야의 현장에서 구조 건전성 감시 및 손상 위치 평가 기법으로 꾸준하게 사용되어 오 고 있다. 즉, 음향방출 기법은 주로 대형 구조물 의 상시 감시 및 구조 건전성 감시(structural health monitoring, SHM) 분야에서 널리 사용되고 있었으며 배관, 압력 용기, 발전 설비 및 교량을 포함한 토목구조물과 같은 기존의 사용 영역을 넘어 최근에는 풍력 발전기 블레이드 및 특수 복 합재료 구조물의 건전성 감시 및 초기 손상 검출 을 목적으로 연구에 활발히 적용되고 있는 실정 이다.

재료나 구조물에서의 결함 탐상을 위해서는 초 음파 시험(ultrasonic testing, UT)이 널리 이용되고 있으나, 초음파 탐상의 경우 결함의 위치 표정을 위해서는 대상물 전체에 걸쳐 탐촉자를 이동하며 스캐닝을 실시해야 한다. 음향방출 위치표정 기 법은 측정을 위해 센서를 이동하지 않고 고정된 상태로 신호의 측정 및 위치 표정을 비교적 간단 하게 실시할 수 있다. 이와 같은 음향방출 위치 표정 기법의 원리는 지진파의 계측 및 진원지의 위치를 구하는 방법과 유사하다. 기본적으로 음 향방출 위치표정 결과의 신뢰성을 높이기 위해서 는 측정 대상체에서의 탄성파 전파속도를 정확하 게 알아야 하며, 전파 경로에 대한 정보 지식 및 각 센서에 도달하는 시간차를 정확하게 측정할 필요가 있다. 대체적으로 균열 등에서 발생하는 돌발형 신호에 의한 위치표정은 앞서 언급한 탄 성파 도달 시간차 방법으로 비교적 쉽게 판단이 가능하나, 배관에서의 누설 또는 마찰 마모 등에 서 발생하는 연속형 신호의 경우 도달 시간차 측 정으로는 결정이 어렵게 되며 또 다른 개념의 위 치표정 기법이 사용되게 된다.

음향방출 기법은 구조물 내부에서 발생하는 균 열 진전 및 마찰 등에 의한 탄성파를 측정하기 때문에 위치표정을 위해서 구조물 전체의 스캐닝 없이 임의 위치에 부착된 센서를 사용한다. 즉 측정 대상에서의 탄성파 전파 속도 및 센서의 부 착 위치에 대한 정보만 있다면 위치표정이 가능 하므로 위치표정에 필요한 과정이 비교적 간단하 고 쉽다. 또한 스캐닝이 필요 없기 때문에 측정 대상에 센서를 부착 후에는 원격지에서 상시 감 시도 가능하게 된다. 음향방출 기법을 이용한 위 치표정은 이와 같은 기법상의 장점으로 인해 다 양한 분야에서 활발히 사용되고 있다.

2. 음향방출 위치표정 기술[1]

도달 시간차를 이용한 위치표정 기법은 음향방 출의 가장 기본적인 위치표정 기법이다. 측정 구 조물에 부착된 다수의 센서를 사용하여 센서의 위치와 각각의 센서에서 측정된 신호의 도달 시 간의 차이를 이용하는 기법으로 사용된 센서 및 구조물에 따라 다음과 같이 나눌 수 있다.

2.1. 도달 시간차(Arrival Time Difference) 기법

도달 시간차를 이용한 위치표정 기법은 센서의

부착위치와 대상 구조물에서의 탄성파 전파 속도 를 이용하여 임의의 위치에서 발생한 결함의 위 치를 검출하게 된다.

그림 1과 같은 가장 기본적인 1차원 배열에서 발생한 임의의 위치에서의 위치표정 결과는 다음 과 같다. 여기서 d 는 처음 도달한 센서로부터의 거리이다.

- $d = \frac{1}{2} (D V \cdot \Delta t)$
- 여기서, D = 센서간의 거리 V = 일정한 파형 전파 속도 △t = 도달 시간차

그림 1과 같은 1차원 위치표정 방법은 가스, 수도 배관 등에서의 손상을 검출하는데 적합한 방법으로 센서를 1차원 선위에 배치하여 손상 위 치를 검출하게 된다.

구조물의 형태가 간단하고 간단한 수식을 사용 하지만 측정 기법의 적용 분야가 배관의 누출신 호와 같이 연속되는 신호의 검출이기 때문에 도 달 시간의 정확한 검출이 위치표정 결과의 정확 도에 큰 영향을 준다.

평면에서 위치표정을 실시하는 2차원 위치표정 은 1차원 위치표정과 원리가 같으며 단지 3개 이

그림 2. 2-dimensional source location

상의 센서를 이용하게 된다. 즉, 1차원 위치표정 과 마찬가지로 각각의 2개 조합센서(센서1과 센 서2, 센서1과 센서3)에서 얻어진 위치표정 곡선 의 교차점을 이용하여 2차원 평면에서의 결함 위 치를 얻게 된다. 3개의 센서를 사용할 경우의 위 치표정 과정을 그림 2에 나타내었다.

2차원 위치표정은 평판에서의 위치표정 뿐만 아니라 곡면으로 구성된 압력용기 등에서의 결함 위치 표정에도 적용 가능하다.

2.2. 지역 위치표정(Zone Location) 기법

음향방출 시험은 탄성파를 사용하는 다른 비파 괴검사 기법에 비하여 비교적 낮은 주파수 대역 을 사용하므로 대형 구조물의 감시에 효과적이 다. 하지만 구조물의 형태가 복잡하거나 탄성파 속도 측정에 어려움이 있는 경우에는 탄성파 도 달 시간차를 이용한 위치표정 기법을 적용하기 어렵게 된다. 이럴 경우 아주 정확한 위치표정은 불가능하지만 부착된 센서별로 영역을 분할하여 측정된 신호의 크기 또는 에너지 분석 개념을 도 입하게 되면 대략적인 손상 영역의 선정이 가능 하게 된다. 즉, 센서 부착 위치에 따라 영역을 나 누고 측정된 신호의 크기를 계속 비교해 가면서 결함이나 누출이 발생된 영역을 좁혀갈 수 있게 된다. 지역 위치표정 기법도 도달 시간차 기법과 같이 측정 대상물 및 센서의 배치에 따라 1차원 및 2차원 측정이 가능하다. 그림 3에 지역 위치 표정 기법을 이용한 1차원 및 2차원 위치표정 방 법을 나타내었다.

그림 3. Zone location method

3. 음향방출 위치표정 신기술 동향

음향방출 위치표정 기법은 앞서 언급하였듯이 시험 대상 구조 재료의 전파 속도에 크게 영향을 받게 된다. 하지만 최근 대형 구조물은 효율성 및 비용의 절감을 위하여 이종복합재료를 사용하 는 경우가 많다.

유리섬유, 탄소섬유와 같은 재료로 대표되는 복합재료는 섬유의 방향 및 적층 방식에 따라 전 파 속도가 일정하지 않을 뿐 아니라 서로 다른 이종복합구조재의 경우에는 전파 속도 변화 및 감쇠 특성의 영향을 크게 받게 된다.

이러한 이유로 도달 시간차를 이용한 전통적인 음향방출 위치표정 기법을 다중 복합재료에 적용 하게 되면 측정 오차가 크게 발생하거나 위치표 정 자체가 불가능한 경우가 빈번히 발생한다.

이를 해결하기 위한 연구로서 크게 새로운 신 호처리 기법의 적용, 센서간 능동적인 네트워크 의 구축 및 구조물 데이터베이스를 활용한 위치 표정에 대한 연구가 활발히 진행되고 있다.

새로운 신호처리 기법의 적용을 통하여 기존의 하드웨어적인 측정기법은 그대로 유지한 채 손상 위치평가의 적용 범위 및 정확성을 높이는 연구 들이 있다. 이러한 연구 중에 웨이블릿 변환 기 법을 이용한 디노이징 신호처리 기법에 관한 연 구[2,3] 및 원통형 실린더에서 발생한 탄성파의 전파 루트별 도달 시간차를 이용한 손상 위치표 정 기법에 관한 연구[4]가 있다.

3.1. 센서 배치 기법 및 무선 시스템

음향방출 위치표정 기술은 다수의 센서를 사용 하여 재료를 통하여 전파되는 탄성파를 측정, 센 서의 위치와 탄성파 도달 시간차에 의해서 손상 위치를 찾는 기술이다. 그러므로 탄성파 전파 속 도를 결정짓는 재료의 물성치에 영향을 받으며 복합소재나 2가지 이상의 복합재로 구성된 구조 물에서는 손상 위치 추적에 큰 어려움을 겪게 된 다. 또한 고주파 신호의 감쇠가 큰 복합재료의 특성으로 인하여 사용할 센서의 주파수 대역 및 센서 개수의 선정에도 주의를 기울여야 한다. 이 러한 어려움을 극복하기 위하여 그림 4와 같이 다수의 pinducer를 array로 만든 뒤 하나의 센서 로 묶어 센서 내부의 pinducer에 도달하는 신호 순서를 이용하여 발생원 방향을 탐지하는 방법 [5-7]으로 이 다발형 탐촉자 센서를 다수 사용하 여 일방성 GFPR 복합재료에서 손상 발생 위치를 평가하는 연구[5]가 있다.

이러한 다발형 탐촉자 센서 시스템은 무선시스 템에서 위치표정 기법 적용시 개별 유닛으로 측 정되는 신호의 동기화의 어려움을 해결할 수 있 는 기법으로, 하나의 무선 유닛 안에서 위치 표 정에 필요한 센서의 수만큼 채널을 확보하여 센 서간 동기화에 대한 문제를 해결한다. 그러므로 이러한 환경에서 그림 5와 같이 좁은 범위에 센 서를 배치하고 넓은 범위에서 손상 측정 및 위치 표정이 가능하도록 하는 새로운 센서 배열에 관 한 연구[6] 및 이러한 센서 배열로 측정된 신호 에 대한 위치표정 정밀도 향상을 위하여 그림 6 과 같이 beam forming을 적용한 기법[7]에 관한 연구도 연구되고 있다.

이러한 대형 구조물의 모니터링 시스템을 효과 적으로 구성하기 위해서는 장거리 수신을 위한 저전력 wireless 측정 장비의 개발 및 다수의 wireless 장비에서 측정된 신호의 유기적인 분석 을 위한 신호처리 기법의 개발이 필요하다. 대표 적인 음향방출 장비 선두 기업인 미국의 Mistras 그룹의 경우 TIP(technology innovation program)을 통하여 사우스 캐롤리나 대학, 마이애미 대학, 버

그림 4. A spherical wave with propagation velocity c impinges upon a planer, circular array of six elements[7]

그림 5. Comparison of covered area of TOA (left) and local triangular sensor array (right) method[6]

그림 6. The vespagram (a) and contours of the 3D plot (b) for a typical acoustic emission in a reinforced concrete structure [7]

그림 7. Mistras 4 channel AE Node

지니아 공대와 함께 연구개발을 통하여 무선 AE Node를 개발하고 있다(그림 7). Mistras 그룹의 무선 음향방출 시스템은 4채널 측정, 초저전력, 무선, 음향방출 모니터링 및 Acousto Ultrasonic 기법을 위한 펄스 발생기를 포함하며 에너지 하 베스팅(energy harvesting)을 이용하여 장시간 구 동을 위한 장치를 개발하는 것을 목표로 현재 시 제품 제작 및 필드테스트를 진행 중에 있다.

3.2. 센서 네트워크를 이용한 위치표정

압전 센서의 structural neural system 알고리즘을 사용하여 직렬로 연결된 센서의 배열 및 신호처 리를 통한 복합재 구조물에서의 손상 위치 추적 에 관한 연구[8,9] 및 음향 토모그래피를 응용한 기술로 복합재에 존재하는 손상의 위치를 추적하 는 연구[10]는 센서 네트워크를 구축하여 기존의 기법을 개선하기 위한 연구다.

 (a) Each small square indicates two adjacent sensor nodes

(b) The magnified view of (a)

그림 8. Architecture of the SNS[11]

대형 복합재 구조물은 풍력 블레이드 및 항공 기 날개와 같이 높은 안전성이 요구되는 구조물 에 주로 사용되고 있어 손상의 상시 감시 및 위 치표정 시스템의 요구가 매우 큰 분야이다. 하지 만 감쇠가 심한 이방성 재료를 사용하기 때문에 측정이 힘들며 위치표정이 매우 어렵다. 대형 복 합재 구조물에서의 손상위치표정을 위한 새로운 기법 연구로서 기존 기법의 단점을 보완하기 위 한 연구가 진행되고 있다.

새로운 neural sensor network는 소형 임베디드 하드웨어에 필수적인 적은 측정 채널수를 가능하 게 해주는 기법으로, 그림 8과 같이 다수의 센서 를 병렬로 연결하여 측정 채널수를 대폭 감소시 켜주는 기법으로 측정 채널의 효율적인 사용에 의한 위치표정 성능의 향상을 꾀하고 있다[11].

3.3. 에너지 맵핑 기법에 의한 위치표정

음향방출 신호 에너지 Map D/B 기반 위치표 정 알고리즘은 새로운 파라미터 및 손상 추적 알 고리즘의 적용을 통하여 측정 범위의 향상 및 적 용 분야의 확장을 이루어냈다[12,13]. 그림 9(a)와 같이 일정한 패턴으로 동일한 에너지를 가지는 탄성파를 입력하여 구조물의 불균일성에 대한 정 보를 사전에 실험적으로 확보한 상태에서 미확인 신호가 검출되었을 때, 그림 9(b)와 같은 기존에 가지고 있던 데이터베이스 정보와 비교 분석을 통하여 미확인 신호의 위치표정 및 신호 크기를 정량화 하게 된다.

이러한 연구로서 이종의 복합재료로 구성된 풍 력 블레이드에서 발생한 손상 신호의 위치를 판 별하기 위해 에너지 데이터베이스를 활용하는 연 구가 있다. 일정 크기의 신호를 일정한 패턴을 정하여 입력후 부착된 센서를 통하여 각각의 위 치에서의 음향방출 신호를 측정하여 에너지 값으 로 변환 후 데이터베이스로 저장한다.

블레이드가 운영 중에 외부 물체의 충돌 혹은 과도한 풍하중에 의한 재료의 박리 혹은 접착면 의 디본딩에 의한 손상신호 발생시 손상신호의 에너지 값을 측정하여 데이터베이스와 비교하여 위치표정을 실시하게 된다.

에너지 데이터베이스 기법은 재료의 전파 속도 에 전혀 영향을 받지 않기 때문에 복합재료는 물 론 이종재료를 사용한 구조물에서도 위치표정이 가능하다. 또한 결과값의 신뢰성을 높이기 위해 각 센서에서 측정된 결과값을 중첩하여 최종 위 치표정을 실시하게 된다.

이와 같은 알고리즘에 적용하기 위한 스마트 액티브 레이어(smart active layer, SAL) 센서에 대 한 연구가 있다. 소재를 적층하여 재료를 만드는 복합소재의 특징을 활용한 센서로 얇은 필름에 다수의 PZT 혹은 PVDF를 일정 패턴으로 내장하 여 재료 내부에 임베디드 함으로써 도달 시간차 혹은 에너지 맵핑 기법에 활용 가능한 음향방출 센서도 개발되었다[14].

(a) Source input point on blade specimen

(b) Energy map of blade database

그림 9. Map database algorithm[12]

그림 10. System schematic showing raster scan paths of laser mirror scanner (LMS)[15]

그 외에 off-shore 혹은 원전 발전소와 같이 측 정 대상으로의 접근이 어렵거나 측정 환경이 인 체에 해로운 작업장에서의 음향방출 위치표정 검 사를 위한 비접촉 측정을 위한 연구가 또한 진행 되고 있다. 이러한 비접촉 측정의 대표적인 예로 그림 10과 같이 laser 가진으로 구조물에 탄성파 를 발생시킨 후 임베디드 음향방출 센서 혹은 laser vibrometer를 이용하여 측정이 이루어지는 방식이 있다. 이런한 기법은 초음파탐상 기법의 active 측정 방식을 도입한 음향초음파(acoustoultrasonic, AU) 방식을 응용한 기법이다.

내장된 음향방출 센서 및 스캐닝이 가능한 고 출력 원거리 레이저를 이용하여 대형 복합재 블 레이드 및 항공기용 복합소재의 손상 위치 및 크 기를 가시화 하는 연구[15]등이 이루어지고 있다.

4. 결 론

최근 산업계의 큰 경향은 고비용 고효율로 대 표되는 그린에너지 산업이라 할 수 있다. 경량화 를 통하여 높은 효율을 얻기 위해 복합소재가 다 수 사용되고 있으며, 기존의 화학에너지를 대체 하는 그린 에너지 시장은 높은 비용으로 인해 고 성능의 구조물 모니터링 시스템에 대한 수요 증 가가 예상되고 있다. 음향방출 위치표정 기법은 이러한 산업계의 변화에 적응하여 복합소재에서 의 위치표정 성능 향상 및 모니터링 시스템으로 진화하고 있지만, 아직까지 뚜렷하게 상용화에 성공한 사례는 찾기 힘들다.

그러므로 본문에서 소개한 새로운 음향방출 기 법들과 같이 음향방출 기법에 대한 연구가 성공 적으로 이루어진다면 새로운 측정 시장에서 선두 기술로서 우위를 점할 수 있을 것이다.

참고문헌

- Ronnie K. Miller and Paul Mcintire, "Nondestructive Testing Handbook, 2nd Edition, Vol. 5 Acoustic Emission Testing," American Society for Nondestructive Testing (1987)
- [2] K.-J. Lee, O.-Y. Kwon and Y.-C. Joo, "An Improved AE Source Location by Wavelet Transform De-noising Technique", *Journal of*

KSNT, Vol. 20, No. 6, pp. 490-500 (2000)

- K.-J. Lee and Oh-Yang Kwon, "AE Source Location in Anisotropic Plates by Using Nonlinear Analysis", *Journal of KSNT*, Vol. 21, No. 3, pp. 281-287 (2001)
- [4] D. J. Yoon, Y. H. Kim and O. Y. Kwon, "New algorithm for acoustic emission source location in cylindrical structures," *J. of Acoustic Emission*, Vol. 9, No. 3, pp. 237-242 (1990)
- [5] J.-O. Lee, S.-H. Won, W.-H. Yoon, J.-K. Lee and C.-H. So, "AE Source Location of Unidirectional GFRP", *Journal of KSNT*, Vol. 21, No. 3, pp. 277-280 (2001)
- [6] A. Dirk, C. Alex and W. Steve, "Acoustic emission source location in plate-like structures using a closely arranged triangular sensor array", 29th European Conference on Acoustic Emission Testing, Austria (2010)
- [7] Gregory C. McLaskey, Steven D. Glaser and Christian U. Grosse, "Acoustic emission beamforming for enhanced damage detection," Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, *Proceedings of the SPIE*, Vol. 6932, pp. 693239-693239-9 (2008)
- [8] G. R. Kirikera, V. Shinde, M. J. Schulz, A. Ghoshal, M. J. Sundaresan, R. J. Allemang and J. W. Lee, "A structural neural system for real-time health monitoring of composite materials," *Structural Health Monitoring*, Vol. 7, No. 1, pp. 65-83 (2008)
- [9] G. R. Kirikeraa, V. Shindea, M. J. Schulza, A. Ghoshalb, M. Sundaresanc and R. Allemangd, "Damage localization in composite and metallic structures using a structural neural system and simulated acoustic emissions," *Mechanical Systems and Signal Processing*, Vol. 21, Issue 1, pp. 280-297 (2007)
- [10] F. Schubert, "Basic principles of acoustic emission tomography," EWGAE (2004)
- [11] M. J. Schulz and M. J. Sundaresan, "Smart sensor system for structural condition

monitoring of wind turbines," Subcontract Report NREL/SR-500-40089, National Renewable Energy Laboratory, Co, USA, (2006)

- [12] B.-H. Han and D.-J. Yoon, "Damage Detection Method of Wind Turbine Blade Using Acoustic Emission Signal Mapping," *Journal of KSNT*, Vol. 31, No. 1, pp. 68-72 (2011)
- [13] B.-H. Han, D.-J. Yoon, Y.-H. Huh and Y.-S. Lee, "Source Location on Full-Scale Wind Turbine Blade Using Acoustic Emission Energy Based Signal Mapping Method",

Journal of KSNT, Vol. 33, No. 5, pp. 443-451 (2013)

- [14] D. J. Yoon, S. I. Lee, J. H. Kwon and Y. S. Lee "Characteristics of patch type smart-piezo-sensor for smart structures," *Key Engineering Materials*, Vol. 297-300, pp 2010-2015 (2005)
- [15] J. R. Lee, C. C. Chia, H. J. Shin, C. Y. Park and D. J. Yoon, "Laser ultrasonic propagation imaging method in the frequency domain based on wavelet transformation," *Optics and Lasers in Engineering*, Volume 49, Issue 1, pp. 167-175 (2011)