DOI QR코드

DOI QR Code

Effect of Microwave Irradiation on Exfoliation of Graphene Oxide

마이크로파 조사가 산화그래핀의 화학적 박리에 미치는 효과

  • Lee, Jae-Hee (Department of Materials Science & Engineering, Chungnam National University) ;
  • Hwang, Ki-Wan (Department of Materials Science & Engineering, Chungnam National University) ;
  • Jeong, Young-Hoon (Department of Materials Science & Engineering, Chungnam National University) ;
  • Kim, Eui-Tae (Department of Materials Science & Engineering, Chungnam National University)
  • 이재희 (충남대학교 공과대학 재료공학과) ;
  • 황기완 (충남대학교 공과대학 재료공학과) ;
  • 정영훈 (충남대학교 공과대학 재료공학과) ;
  • 김의태 (충남대학교 공과대학 재료공학과)
  • Received : 2013.10.10
  • Accepted : 2013.11.19
  • Published : 2013.12.27

Abstract

Graphene oxide has been synthesized by microwave-assisted exfoliation of graphite oxide prepared by modified Hummers method. Graphite was oxidized in a solution of $H_2O_2$ and $KMnO_4$ at $65{\sim}80^{\circ}C$, followed by 10 % $H_2O_2$ solution treatment at $80{\sim}90^{\circ}C$. The graphite oxide was exfoliated under microwave irradiation of 1 kW and was reduced to graphene effectively by hydrazine hydrate ($H_4N_2{\cdot}H_2O$) treatment. The exfoliation of graphene oxide was significantly affected by the microwave irradiation on (heating)/off (cooling) period. An on/off period of 10 s/20 s resulted in much more effective exfoliation than that of 5 s/10 s with the same total treatment time of 10 min. This can be explained by the higher exfoliation temperature of 10 s/20 s. Repetition of the graphite oxidation and exfoliation processes also enhanced the exfoliation of graphene oxide. The thickness of the final graphene products was estimated to be several layers. The D band peaks of the Raman spectra of the final graphene products were quite low, suggesting a high crystal quality.

Keywords

References

  1. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett., 8, 3498 (2008). https://doi.org/10.1021/nl802558y
  2. Y. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner, R. S. Ruoff, Carbon, 48, 2118 (2010). https://doi.org/10.1016/j.carbon.2010.02.001
  3. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Caoa, and Y. Yang, Energy Environ. Sci., 4, 2826 (2011). https://doi.org/10.1039/c1ee01198g
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  5. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Proc. Natl. Acad. Sci. U.S.A., 102, 10451 (2005). https://doi.org/10.1073/pnas.0502848102
  6. S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, and R. C. Haddon, J. Am. Chem. Soc., 128, 7720 (2006). https://doi.org/10.1021/ja060680r
  7. C. G. Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghrd, and K. Kern, Nano Lett., 7, 3499 (2007). https://doi.org/10.1021/nl072090c
  8. G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First, and J. A. Stroscio, Science, 317, 219 (2007). https://doi.org/10.1126/science.1142882
  9. C. Faugeras, A. Nerriere, M. Potemski, A. Mahmood, E. Dujardin, C. Berger, and W. A. D. Heer, Appl. Phys. Lett., 92, 011914 (2008). https://doi.org/10.1063/1.2828975
  10. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett., 9, 30 (2009). https://doi.org/10.1021/nl801827v
  11. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312 (2009). https://doi.org/10.1126/science.1171245
  12. X. S. Li, W. W. Cai, L. Colombo, and S. Ruoff, Nano Lett., 9, 4268 (2009). https://doi.org/10.1021/nl902515k
  13. W. S. Hummers and R. E. Offeman, J. Amer. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  14. G. Xin, W. Hwang, N. Kim, S. M. Cho, and H. Chae, Nanotechnology, 21, 405201 (2010). https://doi.org/10.1088/0957-4484/21/40/405201
  15. A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, Nano Lett., 8, 2012 (2008). https://doi.org/10.1021/nl8011566
  16. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett., 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401