DOI QR코드

DOI QR Code

Growth and Electrical Properties of ZnAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy

Hot Wall Epitaxy(HWE)법에 의한 ZnAl2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구

  • Received : 2013.11.02
  • Accepted : 2013.11.19
  • Published : 2013.12.27

Abstract

A stoichiometric mixture of evaporating materials for $ZnAl_2Se_4$ single-crystal thin films was prepared in a horizontal electric furnace. These $ZnAl_2Se_4$ polycrystals had a defect chalcopyrite structure, and its lattice constants were $a_0=5.5563{\AA}$ and $c_0=10.8897{\AA}$.To obtain a single-crystal thin film, mixed $ZnAl_2Se_4$ crystal was deposited on the thoroughly etched semi-insulating GaAs(100) substrate by a hot wall epitaxy (HWE) system. The source and the substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single-crystal thin film was investigated by using a double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of the $ZnAl_2Se_4$ single-crystal thin film were $8.23{\times}10^{16}cm^{-3}$ and $287m^2/vs$ at 293 K, respectively. To identify the band gap energy, the optical absorption spectra of the $ZnAl_2Se_4$ single-crystal thin film was investigated in the temperature region of 10-293 K. The temperature dependence of the direct optical energy gap is well presented by Varshni's relation: $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=3.5269eV$, ${\alpha}=2.03{\times}10^{-3}eV/K$ and ${\beta}=501.9K$ for the $ZnAl_2Se_4$ single-crystal thin film. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnAl_2Se_4$ were estimated to be 109.5 meV and 124.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n = 21.

Keywords

References

  1. A. N. Georgobiani, S. I. Radautsan, and I. M. Tigiyanu, Sov. Phys. Semicond. 19, 121 (1985).
  2. S. C. Hyun, C. D. Kim, C. S. Yoon, and S. H. Choe, J. Kor. Phys. Soc., 37, 295 (2000).
  3. O. V. kulikova, N. A. Moldovyan, S. M. Popov, S. I. Radautsan and A.V. Siminel, Jpn. J. Appl. Phys. 32(3), 586 (1993). https://doi.org/10.7567/JJAPS.32S3.586
  4. I. I. Burlakov, Y. Raptis, V. V. Ursaki, E. Anastassakis, and I. M. Tiginyanu, Solid State Commun. 101, 377 (1997). https://doi.org/10.1016/S0038-1098(96)00602-3
  5. J. D. Hecht, A. Elifler, V. Riede, and M. Schubert, Phys. Rev. B57, 7037 (1998).
  6. T. Kai, M. Kaifuku, I. Aksenov, and K. Sato, Jpn. J. Appl. Phys. 34, 3073 (1995). https://doi.org/10.1143/JJAP.34.3073
  7. S. H. Choe, C. S. Yoon, and W. T. Kim, J. Mater. Res., 15, 2690 (2000). https://doi.org/10.1557/JMR.2000.0387
  8. K. J. Hong, T. S. Jeong, and S. H. You, J. Crystal Growth, 310, 2717 (2008). https://doi.org/10.1016/j.jcrysgro.2008.02.011
  9. P. Korczak and C. B. Staff, J. Crystal Growth, 24/25, 386 (1974). https://doi.org/10.1016/0022-0248(74)90342-X
  10. B. D. Cullity, Caddson-Wesley, chap.11, (1985).
  11. C. S. Yoon, S. H. Choe and W. T. Kim, Semicond. Sci. Technol. 15, 1001 (2000). https://doi.org/10.1088/0268-1242/15/10/313
  12. H. Fujita, J. Phys. Soc., 20, 109 (1965). https://doi.org/10.1143/JPSJ.20.109
  13. J. L. Shay and J. H. Wernick, (chap. 3, chap. 4, Pergamon Press, 1975).
  14. Y. P. Varshni, Physica. 34, 149 (1967). https://doi.org/10.1016/0031-8914(67)90062-6
  15. Shay, J. L. and Wernick, J. H., Ternary chalcopyrite semiconductor : electronic properties, and applications, pergamon, chap. 4 (1975)
  16. J. Hopfield. J. Phys. Chem. Solids 15, 97 (1960). https://doi.org/10.1016/0022-3697(60)90105-0
  17. J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper and F. Thiel, Phys. Rev., 9(4), 1719 (1974). https://doi.org/10.1103/PhysRevB.9.1719