DOI QR코드

DOI QR Code

Size Control of Gold Nanoparticles by Heat Treatment and Its Use as a Catalyst for Single-Walled Carbon Nanotube Growth

열처리를 통한 금 나노입자의 크기 제어와 일벽 탄소나노튜브의 합성 촉매로의 이용

  • Lee, Seung-Hwan (Department of Nano Applied Engineering, Kangwon National University) ;
  • Jeong, Goo-Hwan (Department of Nano Applied Engineering, Kangwon National University)
  • 이승환 (강원대학교 나노응용공학과) ;
  • 정구환 (강원대학교 나노응용공학과)
  • Received : 2013.11.07
  • Accepted : 2013.12.03
  • Published : 2013.12.27

Abstract

We demonstrated size control of Au nanoparticles by heat treatment and their use as a catalyst for single-walled carbon nanotube (SWNTs) growth with narrow size distribution. We used uniformly sized Au nanoparticles from commercial Au colloid, and intentionally decreased their size through heat treatment at 800 oC under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates to achieve parallel alignment of the SWNTs and to investigate the size relationship between Au nanoparticles and SWNTs. After the SWNTs were grown via chemical vapor deposition using methane gas, it was found that a high degree of horizontal alignment can be obtained when the particle density is low enough to produce individual SWNTs. The diameter of the Au nanoparticles gradually decreased from 3.8 to 2.9 nm, and the mean diameter of the SWNTs also changed from 1.6 to 1.2 nm for without and 60 min heat treatment, respectively. Raman results reconfirmed that the prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distribution. This work demonstrated that heat treatment can be a straightforward and reliable method to control the size of catalytic nanoparticles and SWNT diameter.

Keywords

References

  1. Z. Liu, L. Jial, Y. Yao, X. Xian and J. Zhang, Adv. Mater., 22, 1 (2010). https://doi.org/10.1002/adma.201090021
  2. H. Liu, T. Tanaka, Y. Urabe and H. Kataura, Nano Lett., 13, 1996 (2013). https://doi.org/10.1021/nl400128m
  3. R. Saito, M. S. Dresselhaus and G. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, (1998).
  4. A. M. Rao, P. C. Eklund, S. Bandow, A. Thess and R. E. Smalley, Nature, 388, 257 (1997). https://doi.org/10.1038/40827
  5. G. H. Jeong, A. A. Farajian, R. Hatakeyama, T. Hirata, T. Yaguchi, K. Tohji, H. Mizuseki and Y. Kawazoe, Phys. Rev. B, 68, 075410 (2003). https://doi.org/10.1103/PhysRevB.68.075410
  6. M. Ishida, H. Hongo, F. Nihey and Y. Ochiai, Jpn. J. Appl. Phys., 43, L1356 (2004). https://doi.org/10.1143/JJAP.43.L1356
  7. A. Javey and H. Dai, J. Am. Chem. Soc., 127, 11942 (2005). https://doi.org/10.1021/ja0536668
  8. Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang and H. Dai, J. Phys. Chem. B, 105, 11424 (2001). https://doi.org/10.1021/jp012085b
  9. H. C. Choi, W. Kim, D. Wang and H. Dai, J. Phys. Chem. B, 106, 12361 (2002). https://doi.org/10.1021/jp026421f
  10. G. H. Jeong, S. Suzuki, Y. Kobayashi, A. Yamazaki, H. Yoshimura and Y. Homma, J. Appl. Phys., 98, 124311 (2005). https://doi.org/10.1063/1.2146054
  11. G. H. Jeong, S. Suzuki, Y. Kobayashi, A. Yamazaki, H. Yoshimura, and Y. Homma, Appl. Phys. Lett., 90, 043108 (2007). https://doi.org/10.1063/1.2433024
  12. W. S. Song, C. H. Jeon, Y. S. Kim, Y. T. Kwon, D. S. Jung, S. W. Jang, W. C. Choi, J. S. Park, R. Saito and C. Y. Park, ACS Nano, 4, 1012 (2010). https://doi.org/10.1021/nn901135b
  13. H. Ago, Y. Ayagaki, Y. Ogawa and M. Tsuji, J. Phys. Chem. C, 115, 13247 (2011). https://doi.org/10.1021/jp2038448
  14. Y. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Huang, A. Javey, J. Cao, D. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi and H. Dai, Nano Lett., 4, 317 (2004). https://doi.org/10.1021/nl035097c
  15. T. Kato and R. Hatakeyama, J. Am. Chem. Soc., 130, 8101 (2008). https://doi.org/10.1021/ja802427v
  16. X. Yu, J. Zhang, W. Choi, J. Y. Choi, J. M. Kim, L. Gan and Z. Liu, Nano Lett., 10, 3343 (2010). https://doi.org/10.1021/nl1010178
  17. J. Liu, C. Wang, X. Tu, B. Liu, L. Chen, M. Zheng and C. Zhou, Nat. Commun., 3, 1199 (2012). https://doi.org/10.1038/ncomms2205
  18. J. J. Kim, B. J. Lee, S. H. Lee and G. H. Jeong, Nanotechnology, 23, 105607 (2012). https://doi.org/10.1088/0957-4484/23/10/105607
  19. H. Ago, K. Nakamura, K. Ikeda, N. Uehara, N. Ishigami and M. Tsuji, Chem. Phys. Lett., 408, 433 (2005). https://doi.org/10.1016/j.cplett.2005.04.054
  20. C. Kocabas, S. H. Hur, A. Gaur, M. Meitl, M. Shim and J. Rogers, Small, 11, 1110 (2005).
  21. S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, A. V. Rotkin and J. A. Rogers, Nat. Nanotechnol., 2, 230 (2007). https://doi.org/10.1038/nnano.2007.77
  22. G. H. Jeong, A. Yamazaki, S. Suzuki, H. Yoshimura, Y. Kobayashi and Y. Homma, Carbon, 45, 978 (2007). https://doi.org/10.1016/j.carbon.2006.12.032
  23. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus and M. S. Dresselhaus, Science, 275, 187 (1997). https://doi.org/10.1126/science.275.5297.187
  24. J. Meyer, M. Paillet, T. Michel, A. Moreac, A. Neumann, G. Duesberg, S. Roth and J.-L. Sauvajol, Phys. Rev. Lett., 95, 217401 (2005). https://doi.org/10.1103/PhysRevLett.95.217401