DOI QR코드

DOI QR Code

Inverse Estimation of Convective Heat Transfer Coefficient, Emissivity and Flame Heat Flux on the Surface

표면의 대류열전달계수, 방사율 및 화염 열유속 역해석 연구

  • 윤경범 (한국건설생활환경시험연구원) ;
  • 박원희 (한국철도기술연구원)
  • Received : 2013.09.12
  • Accepted : 2013.12.06
  • Published : 2013.12.31

Abstract

The convective heat transfer coefficient, emissivity, and flame heat flux on the surface of Duglas fir are estimated by using repulsive particle swarm optimization. The surface temperature, mass loss rate, and ignition time are measured for various incident heat fluxes from a cone heater of the cone calorimeter. The calculated surface temperatures obtained by using the optimized convective heat transfer coefficient, emissivity and flame heat flux on the surface in this study match well with those obtained from the test. The maximum error between the predicted and measured surface temperatures for the three different external heat fluxes is within 2% showing reasonable agreements. The methodology proposed in this study can be used to obtain various values related to heat transfer on a flaming surface that are difficult to measure in experiments.

반발 입자 군집 최적화 알고리즘을 이용하여 시편 표면에서의 대류열전달 계수, 방사율 및 화염에 의한 열유속을 예측하였다. 콘 칼로리미터를 이용하여 여러 열유속 조건 하에서의 방무목 시편의 표면 온도와 질량감소율 및 발화시간을 측정하였다. 본 연구에서 최적화된 대류열전달계수, 방사율 및 화염에 의한 열유속을 이용하여 계산된 표면온도는 실험결과와 각 열유속에 대하여 평균오차가 2% 내로 잘 일치하였다. 본 연구에서 제시한 방법을 이용하여 실험적 방법으로 직접 측정하기 매우 어려운 화염이 발생하는 표면에서 열전달과 관련된 여러 물리량을 구할 수 있다.

Keywords

References

  1. K. McGrattan, "Fire Dynamics Simulator (Version 4) Technical Reference Guide", NIST Special Publication 1018-4 (2004).
  2. C. Lautenberger, Y. Y. Zhou and A. C. Fernandez-Pello, "Numerical Modeling of Convective Effects on Piloted Ignition of Composite Materials", Combustion Science and Technology, Vol. 177, pp. 1231-1252 (2005). https://doi.org/10.1080/00102200590927058
  3. C. Lautenberger, S. McAllister, D. Rich and C. Fernandez-Pello, "Modeling the Effect of Environmental Variables on Opposed-Flow Flame Spread Rates with FDS", Fire Safety in Tall Buildings International Congress, University of Cantabria, Santander Spain, October, pp. 18-20 (2006).
  4. C. Lautenberger, S. McAllister, D. Rich and C. Fernandez-Pello, "Effect of Environmental Variables on Flame Spread Rates in Microgravity", 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January, AIAA Paper 2007-383 (2007).
  5. K. W. Kim, S. W. Baek, B. S. Shin, K. J. Kil and K. G. Yeo, "Comparison of Regularization Techniques for an Inverse Radiation Boundary Analysis", Tran. KSME(B), Vol. 29, No. 8, pp. 903-910 (2005). https://doi.org/10.3795/KSME-B.2005.29.8.903
  6. K. H. Lee, S. W. Baek and K. W. Kim, "Inverse Radiation Analysis using Repulsive Particle Swarm Optimization Algorithm", International Journal of Heat and Mass Transfer, Vol. 51, pp. 2772-2783 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.037
  7. C. Lautenberger, G. Rein and C. Fernadez-Pello, "The Application of a Genetic Algorithm to Estimate Material Properties for Fire Modeling from Bench-Scale Fire Test Data", Fire Safety Journal, Vol. 41, pp. 204-214 (2006). https://doi.org/10.1016/j.firesaf.2005.12.004
  8. H. C. Chang, W. H. Park, K. B. Yoon, T. K. Kim, D. H. Lee and W. S. Jung, "Inverse Estimation of Properties for Charring Material using a Hybrid Genetic Algorithm", Journal of Mechanical Science and Technology, Vol. 25, No. 6, pp. 1429-1437 (2011). https://doi.org/10.1007/s12206-011-0402-3
  9. H. C. Chang, "Study on Inverse Property Estimation for Thermal Pyrolysis and Radiation by Using the RPSO Method", Doctoral thesis, Chung-Ang University, Korea (2011).
  10. H. C. Chang, W. H. Park, K. B. Yoon and T. K. Kim, "Estimation of the Properties for Charring Material Using the RPSO Algorithm", Journal of Fluid Machinery, Vol. 14, No. 1, pp. 34-41 (2011). https://doi.org/10.5293/KFMA.2011.14.1.034
  11. C. Lautenberger and C. Fernandez-Pello, "A Generalized Pyrolysis Model for Simulating Charring, Intumescent, Smoldering and Noncharring Gasification", Fire Science, Combustion Processes Laboratories, UC Berkeley, 08-27-2006 (2006).
  12. J. E. J. Staggs and H. N. Phylaktou, "The Effect of Emissivity on the Performance of Steel in Furnace Tests", Fire Safety Journal, Vol. 43, pp. 1-10 (2008). https://doi.org/10.1016/j.firesaf.2007.05.002
  13. J. E. J. Staggs, "Convection Heat Transfer in the Cone Calorimeter", Fire Safety Journal, Vol. 44, pp. 469-474 (2009). https://doi.org/10.1016/j.firesaf.2008.10.002
  14. K. B. Yoon, W. H. Park and T. K. Kim, "Estimations of Convection Heat Trasfer Coefficient and Surface Emissivity of the Specimen in Cone Calorimeter using RPSO", ISFMFE2012 Conference, REF-1067 (2012).
  15. D. Hopkins, Jr., "Predicting the Ignition Time and Burning Rate of Thermoplastics in the Cone Calorimeter", NIST-GCR-95-677 (1995).
  16. ISO 5660-1, "Reaction-to-Fire Tests-Heat Release, Smoke Production, Mass Loss Rate- Part 1: Heat Release Rate (Cone Calorimeter Method)" (2003).
  17. J. Kennedy and R. C. Eberhart, "Particle Swarm Optimization", In: Proceedings of the 1995 International Conference on Neural Networks, Vol. 4, IEEE Press, Piscataway, NJ, pp. 1942-1948 (1995).
  18. K. H. Lee, S. W. Baek and K. W. Kim, "Inverse Radiation Analysis using Repulsive Particle Swarm Optimization Algorithm", International Journal of Heat and Mass Transfer, Vol. 51, pp. 2772-2783 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.037