DOI QR코드

DOI QR Code

Combustion Characteristics of Pinus rigida Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid (Mn+)

알킬렌디아미노알킬-비스-포스폰산 금속염으로 처리된 리기다 소나무 시험편의 연소특성

  • Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University) ;
  • Chung, Yeong-Jin (Dept. of Fire Protection Engineering, Kangwon National University)
  • 진의 (강원대학교 소방방재연구센터) ;
  • 정영진 (강원대학교 소방방재공학과)
  • Received : 2013.11.15
  • Accepted : 2013.12.06
  • Published : 2013.12.31

Abstract

Four kinds of new piperazinomethyl-bis-phosphonic acid $M^{n+}$ ($PIPEABPM^{n+}$) were synthesized and their combustive properties of Pinus rigida plates treated with $PIPEABPM^{n+}$ were tested. Pinus rigida specimens were painted in three times with 15 wt% $PIPEABPM^{n+}$solutions at the room temperature. After drying specimen treated with chemicals, com-bustive properties were examined by the cone calorimeter (ISO 5660-1). As a result, the combustion-retardation proper-ties were increased by due to the treated $PIPEABPM^{n+}$ solutions in the virgin pinus rigida. Especially, the specimens treated with $PIPEABPM^{n+}$ showed both the lower peak heat release rate ($HRR_{peak}$) (162.02~145.36) s and total heat release rate (THRR) (73.0~67.4) $MJ/m^2$ than those of virgin piperazinomethyl-bis-phosphonic acid (PIPEABP)-plate. Compared with virgin PIPEABP-plate, the specimens treated with the $PIPEABPM^{n+}$ showed low combustive properties. However the specimens treated with $PIPEABPM^{n+}$ showed both the shorter time to ignition (TTI) (67~23) s and the time to flameout (Tf) (472~433) s than those of virgin PIPEABP-plate by increasing the thermal conductivity.

새로운 4종의 피페라지노메틸-비스-포스폰산염을 합성하였다. 그리고 이들을 가지고 처리된 리기다 소나무 시험편의 연소성을 시험하였다. 15 wt%의 알킬렌디아미노알킬-비스-포스폰산염 수용액으로 리기다 소나무에 3회 붓칠한 시험편은 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 그의 연소성을 시험하였다. 그 결과, 알킬렌디아미노알킬-비스-포스폰산염으로 처리한 시험편은 피페라지노메틸-비스-포스폰산으로 처리한 시험편에 비하여 그의 연소 억제성을 향상시켰다. 특히 알킬렌디아미노알킬-비스-포스폰산염으로 처리한 시험편은 알킬렌디아미노알킬-비스-포스폰산으로 처리한 시험편보다 각각 낮은 최대열방출률(162.02~145.36) $kW/m^2$과 낮은 총열방출률(73.0~67.4) $MJ/m^2$을 나타내었다. 그러나 알킬렌디아미노알킬-비스-포스폰산염으로 처리한 시험편은 열전도성 증가에 의하여 알킬렌디아미노알킬-비스-포스폰산으로 처리한 시험편에 비해 각각 빠른 착화시간(67~23) s과 짧은 불꽃소멸시간(472~433) s을 나타내었다.

Keywords

References

  1. E. Baysal, M. Altinok, M. Colak, S. K. Ozaki and H. Toker, "Fire Resistance of Douglas Fir (Psedotsuga menzieesi) Treated With Borates and Natural Extractives", Bioresour. Technol., Vol. 98, No. 5, pp. 1101-1105 (2007). https://doi.org/10.1016/j.biortech.2006.04.023
  2. O. Grexa, E. Horvathova, O. Besinova and P. Lehocky, "Falme Retardant Treated Plyood", Polym. Degrad. Stab., Vol. 64, No. 3, pp. 529-533 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  3. Y. J. Chung, "Comparison of Combustion Proprties of Native Wood Species Used for Fire Pots in Korea", J. Ind. Eng. Chem., Vol. 16, No. 1, pp. 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  4. Article 43 of Building Code, Article 61 of Enforcement Ordinance, "The Internal Finish Material of the Building" (2004).
  5. Article 12 of Firefighting Basic Law, Article 20 of Decree, "The Subject Merchandise Flame and Flame Performance Standard" (2005).
  6. P. W. Lee and J. H. Kwon, "Effects of the Treated Chemicals on Fire Retardancy of Fire Retardant Treated Particleboards", Mogjae-Gonghak, Vol. 11, No. 5, pp. 16-22 (1983).
  7. T. S. Mcknight, "The hygroscopicity of Wood Treated With Fire-Retarding Compounds", Fore. Prod. Res. Branch, Dep. of Forestry, Canada. Report No. 190 (1962).
  8. J. C. Middleton, S. M. Dragoner and F. T. Winters, Jr. "An Evaluation of Borates and Other Inorganic Salts as Fire Retardants for Wood Products", Fore. Prod. J., Vol. 15, No. 12, pp. 463-467 (1965).
  9. S. L. Levan and J. E. Winandy, "Effects of Fire Retar-dant Treatments on Wood Strength : A Review", Wood Fiber Sci., Vol. 22, No. 1, pp. 113-131 (1990).
  10. C. A. Holmes, "Effect of Fire-Retardant Treatments on Performance Properties of Wood", Wood Technology: Chemical Aspects, ACS (1970).
  11. R. Kozlowski and M. Hewig, "1st Int Conf. Progress in Flame Retardancy and Flammability Testing", Institute of Natural Fibres, Pozman, Poland (1995).
  12. R. Stevens, S. E. Daan, R. Bezemer and A. Kranenbarg, "The Strucure-Activity Relationship of Retardant Phosphorus Compounds in Wood", Polym. Degrad. Stab., Vol. 91, No. 4, pp. 832-841 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.06.014
  13. Y. J. Chung, Y. H. Kim and S. B. Kim, "Flame Retardant Properties of Polyurethane Produced by the Addition of Phosphorous Containing Polyurethane Oligomers (II)", J. Ind. Eng., Vol. 15, No. 6, pp. 888-893 (2009). https://doi.org/10.1016/j.jiec.2009.09.018
  14. Y. J. Chung, "Flame Retardancy of Veneers Treated by Ammonium Salts", J. Korean Ind. Eng. Chem., Vol. 18, No. 3, pp. 251-255 (2007).
  15. M. L. Hardy, "Regulatory Status and Environmental Properties of Brominated Flame Retardants Undergoing Risk Assessment in the EU: DBDPO, OBDPO, PeBDPO and HBCD", Polym. Degrad. Stab., Vol. 64, No. 3, pp. 545-556 (1999). https://doi.org/10.1016/S0141-3910(98)00141-4
  16. Y. Tanaka, "Epoxy Resin Chemistry and Technology", Marcel Dekker, New York (1988).
  17. ISO 5660-1, "Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate - Part 1: Heat Release Rate (Cone Calorimeter Method)", Genever (2002).
  18. V. Babrauskas, "New Technology to Reduce Fire Losses and Costs", Eds. S. J. Grayson, D. A. Smith, Elsevier Appied Science Publisher, London, UK. (1986).
  19. M. M. Hirschler, "Thermal Decomposition and Chemical Composition", 239, American Chemical Society Symposium Series 797 (2001).
  20. Korean Patent, "Organic Phosphorus-Nitrogen Compounds, Manufacturing Method and Compositions of Flame Retardants Containing Organic Phosphorus-Nitrogen Compounds", No. 10-2011-0034978 (2011).
  21. Y. J. Chung and E. Jin, "Synthesis of Alkylenediaminoalkyl-Bis-Phosphonic Acid Derivatives", J. of Korean Oil Chemist's Soc., Vol. 30, No. 1, pp. 1-8 (2013). https://doi.org/10.12925/jkocs.2013.30.1.001
  22. Cischem Com, "Flame Retardants", Chischem. Com. CO., Ltd. (2009).
  23. W. T. Simpso, "Drying and Control of Moisture Content and Dimensional Changes", Chap. 12, Wood Handbook-Wood as an Engineering Material, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, U.S.A. (1987).
  24. J. C. Kotz, P. M. Treichel and G. C. Weaver, "Electron Transfer Reactions", Chemistry & Chemical Reactivity, Sixth Ed., Thomson Learning, Inc., Toronto, Canada (2006).
  25. M. J. Spearpoint, "Predicting the Ignition and Burning Rate of Wood in the Cone Calorimeter Using an Intergral Model", NIST GCR 99-775, National Institute of Standards and Technology, Gaithersburg, U.S.A. pp. 1-21 (1999).
  26. J. D. DeHaan, "Kirks's Fire Investigation", Fifth Edition, Prentice Hall, New Jersey, U.S.A. (2002).
  27. V. Babrauskas, "Development of Cone Calorimeter-A Bench-Scale Heat Release Rate Apparatus Based on Oxygen Consumption", Fire and Materials, Vol. 8, No. 2, pp. 81-95 (1984). doi:1002/fam.810080206. https://doi.org/10.1002/fam.810080206
  28. V. Babrauskas and S. J. Grayson, "Heat release in Fires", E & FN Spon (Chapman and Hall), London, UK (1992).
  29. V. Babrauskas, "Heat Release Rate", Section 3, The SFPE Handbook of Fire Protection Engineering, Fourth Ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  30. M. J. Spearpoint and G. J. Quintiere, "Predicting the Burning of Wood Using an Integral Model", Combustion and Flame, Vol. 123, No. 3, pp. 308-324 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  31. M. Hagen, J. Hereid, M. A. Delichtsios, J. Zhang and D. Bakirtzis, "Flammability Assesment of Fire-Retarded Nordic Spruce Wood Using Thermogravimetric Analyses and Cone Calorimettry", Fire Safety J., Vol. 44, No. 8, pp. 1053-1069 (2009). https://doi.org/10.1016/j.firesaf.2009.07.004
  32. J. G. Quintire, "Principles of Fire Behavior", Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).