DOI QR코드

DOI QR Code

Effect of Probiotics-Fermented Samjunghwan on Differentiation in 3T3-L1 Preadipocytes

3T3-L1 전지방세포에서 발효 삼정환의 지방 분화 억제 효과

  • Song, Mi-Young (Dept. of Oriental Rehabilitation Medicine, College of Oriental Medicine, Dongguk University) ;
  • Bose, Shambhunath (Dept. of Oriental Rehabilitation Medicine, College of Oriental Medicine, Dongguk University) ;
  • Kim, Ho-Jun (Dept. of Oriental Rehabilitation Medicine, College of Oriental Medicine, Dongguk University)
  • 송미영 (동국대학교 한의과대학 한방재활의학과 교실) ;
  • ;
  • 김호준 (동국대학교 한의과대학 한방재활의학과 교실)
  • Received : 2012.05.08
  • Accepted : 2013.01.01
  • Published : 2013.01.31

Abstract

Samjunghwan (SJH) was fermented using five different probiotic bacterial strains (Lactobacillus plantarum, Enterococcus faecium, Pediococcus pentosaceus, Lactobacillus acidophilus or Bifidobacterium longum) separately. We examined the inhibition of preadipocyte differentiation through Oil Red O staining and analyzed the expression of CCAAT/enhancer-binding protein ${\alpha}$ ($C/EPB{\alpha}$), peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), uncoupling protein (UCP)-2, and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase which are adipogenic transcription factors. Both Lactobacillus plantarum and Enterococcus faecium-fermented SJH reduced Oil Red O dye staining compared with the same dose of non-fermented SJH. Only Lactobacillus plantarum-fermented SJH inhibited all adipogenic transcription factors and showed the best down-regulation of $PPAR{\gamma}$, UCP-2, and HMG-CoA reductase compared with the same dose of non-fermented SJH. The effect of SJH on the inhibition of preadipocyte differentiation was more prominent from the fermented SJH. Lactobacillus plantarum-fermented SJH, in particular, blocks the expression of $PPAR{\gamma}$, UCP-2, HMG-CoA reductase.

본 연구에서는 3T3-L1 전지방세포를 이용하여 발효 삼정환의 지방 분화 억제 효과를 확인하고자 하였다. 삼정환을 5가지 주요 유산균으로 각각 발효시킨 후, Oil Red O 염색법으로 지방세포 분화 억제 여부를 알아보고, 이의 기전을 알기 위해서 지방생성에 핵심적인 역할을 하는 transcription factor 및 지질 조절 효소의 유전자 발현량을 비교하여 보았다. Oil Red O 염색 분석에서는 Lactobacillus plantarum, Enterococcus faecium으로 발효한 삼정환에서 지방구 수의 감소를 확인할 수 있었다. 또한 transcription factor로 $C/EPB{\alpha}$, $PPAR{\gamma}$, UCP-2 및 콜레스테롤 조절과 관련된 효소인 HMG-CoA reductase의 4가지 유전자 발현 정도를 분석하였는데, 발효시키지 않은 삼정환의 경우 농도가 $100{\mu}L/mL$ 이상일 때 네 가지 항목에서 억제 효과를 나타냈으며, 발효시켰을 때는 유산균의 종류에 따라 효과 억제효과가 있었는데, Lactobacillus plantarum으로 발효한 삼정환이 효과가 가장 좋은 것으로 나타났다. Lactobacillus plantarum으로 발효한 삼정환은 동일 농도의 발효하지 않은 삼정환과 비교했을 때, Oil Red O 실험에서 염색된 지방구 수가 더욱 감소하였으며, $PPAR{\gamma}$, UCP-2, HMG-CoA reductase의 경우 농도가 $200{\mu}L/mL$일 때 각각 35%, 57%, 54%로 5가지 발효 삼정환 중 가장 높은 억제율을 나타내었다. 이에 지방분화 억제 효과를 가진 삼정환을 발효시키면 그 효과가 더욱 증가하는 것으로 나타났는데, 특히 Lactobacillus plantarum으로 발효한 삼정환은 $PPAR{\gamma}$, UCP-2, HMG-CoA reductase의 유전자 발현조절을 통해 지방 분화를 억제시키는 것으로 밝혀져 발효 삼정환은 항비만 혹은 항고지혈증 약물로 개발 가능성이 있는 것으로 사료된다.

Keywords

References

  1. KNHANES. Health behaviors and chronic disease statistics, 2010. http://knhanes.cdc.go.kr/knhanes/sub04/sub04_03.do?pageNo=1&classType=7.
  2. Spiegelman BM, Flier JS. 2001. Obesity and the regulation of energy balance. Cell 104: 531-543. https://doi.org/10.1016/S0092-8674(01)00240-9
  3. Soon JY. 2008. Pharmacological treatment of obesity. J Korean Soc Endocrinol 23: 223-233. https://doi.org/10.3803/jkes.2008.23.4.223
  4. KFDA. http://www.kfda.go.kr/antidrug/index.do?nMenuCode =53&mode=view&boardSeq=2367.
  5. Huh J. 1999. Dongyibogam. Bubin Press, Seoul, Korea. p132.
  6. Lee EJ, Bae JH. 2011. Study on the alleviation of an alcohol induced hangover and the antioxidant activity by mulberry fruit. Korean J Food & Nutr 24: 204-209. https://doi.org/10.9799/ksfan.2011.24.2.204
  7. Kwon EH, Jang HS, Kim SW, Choi SW, Rhee SJ, Cho SH. 2007. Effects of mulberry juice and cake powders on blood glucose and lipid lowering and erythrocytic antioxidative enzyme activities in streptozotocin-induced diabetic rats. Korean J Nutr 40: 199-210.
  8. Kim AJ, Park SJ, Rho JO. 2008. Mulberry fruit extract consumption is inversely associated with hyperlipidemia in middle-aged men. Korean J Food & Nutr 21: 121-126.
  9. Ko ST, Moon YH, Kim SO. 1973. Effect on hypertension of Rhizoma Atractylodis. Yakhak Hoeji 17: 103-110.
  10. Han HK, Yoon SJ, Kim KH. 2009. Effects of compositae plants on plasma glucose and lipid level in streptozotocin induced diabetic rats. J Korean Soc Food Sci Nutr 38: 674-682. https://doi.org/10.3746/jkfn.2009.38.6.674
  11. Sung NK, Kim SH, Seo YB, Oh AH. 1994. Effect on blood glucose, hypertension of Lycium chinense miller. J Herbology 9: 161-171.
  12. Jeong HJ. 2005. Effects of samjunghwan on obesity and lipid metabolism in high fat diet rats. MS Thesis. Dongguk University Gyeongju, Korea.
  13. Kim JH, Kim GW, Koo BS. 2009. Effects of Samjung-hwan (Sanjingwan) on obesity and lipid metabolism in rats with high fat diet. J Oriental Neuropsychiatry 20: 47-60.
  14. An YT. 2011. Health functional food and probiotics. The Korean Society of Food and Nutrition Conference, Busan, Korea. p 32-43.
  15. Gilliland SE, Nelson CR, Maxwell C. 1985. Assimilation of cholesterol by Lactobacillus acidophilus. Appl Environ Microbiol 49: 377-381.
  16. Ishihara K, Shin R, Shiina T, Yamamoto H, Isoda M. 1989. Influence of intestinal bacteria on cholesterol metabolism. In Intestinal Flora and Bio-Homeostasis. Mitsuoka T, ed. Japan Scientific Societies Press, Tokyo, Japan. p 121.
  17. Jeun J, Kim S, Cho SY, Jun HJ, Park HJ, Seo JG, Chung MJ, Lee SJ. 2010. Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928 by increased bile acid excretion in C57BL/6 mice. Nutrition 26: 321-330. https://doi.org/10.1016/j.nut.2009.04.011
  18. Zacconi C, Bottazzi V, Rebecchi A, Bosi E, Sarra PG, Tagliaferri L. 1992. Serum cholesterol levels in axenic mice colonizeed with Enterococcus faecium and Lactobacillus acidophilus. Microbiologica 15: 413-417.
  19. Ahn IS, Do MS, Kim SO, Jung HS, Kim YI, Kim HJ, Park KY. 2006. Antiobesity effect of Kochujang (Korean fermented red pepper paste) extract in 3T3-L1 adipocytes. J Med Food 9: 15-21. https://doi.org/10.1089/jmf.2006.9.15
  20. Kim KY, Song HJ. 2002. Herbal processology. Shinil Press, Seoul, Korea. p 547.
  21. Kim YM. 2009. A study on the trend of researches in fermented herb medicines. MS Thesis. Kyungwon University, Gyeonggi-do, Korea. p 1-10.
  22. Park JH, Kim HJ, Lee MJ. 2009. The role of gut microbiota in obesity and utilization of fermented herbal extracts. J Soc Korean Med Obes Res 9: 1-14.
  23. Shin Yj, Kim HJ, Lee MY. 2009. The effects of fermentated Ephedra sinica on obese rats fed by high fat diet. J Oriental Rehab Med 19: 37-57.
  24. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. 2000. Transcriptional regulation of adipogenesis. Genes Dev 14:1293-1307.
  25. Jeon T, Hwang SG, Hirai S, Matsui T, Yano H, Kawda T, Lim BO, Ki D. 2004. Red yeast rice extracts suppress adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 cells. Life Sci 75:3195-3203. https://doi.org/10.1016/j.lfs.2004.06.012
  26. Cowherd RM, Lyle RE, McGehee RE Jr. 1999. Molecular regulation of adipocyte differentiation. Semin Cell Dev Biol 10: 3-10. https://doi.org/10.1006/scdb.1998.0276
  27. Cornelius P, MacDougald OA, Lane MD. 1994. Regulation of adipocyte development. Annu Rev Nutr 14: 99-129. https://doi.org/10.1146/annurev.nu.14.070194.000531
  28. Morrison RF, Farmer SR. 2000. Hormonal signaling and transcriptional control of adipocyte differentiation. J Nutr 130: 3116S-3121S.
  29. Rosen ED, Macdougald OA. 2006. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7: 885-896. https://doi.org/10.1038/nrm2066
  30. Dalgaard LT. 2011. Genetic variance in uncoupling protein 2 in relation to obesity, type 2 diabetes, and related metabolic traits: focus on the functional -866G>A promoter variant (rs659366). J Obes doi:10.1155/2011/340241.
  31. Joseph JW, Koshkin V, Saleh MC, Sivitz WI, Zhang CY, Lowell BB, Chan CB, Wheeler MB. 2004. Free fatty acidinduced beta-cell defects are dependent on uncoupling protein 2 expression. J Biol Chem 279: 51049-51056. https://doi.org/10.1074/jbc.M409189200
  32. Joseph JW, Koshkin V, Zhang CY, Wang J, Lowell BB, Chan CB, Wheeler MB. 2002. Uncoupling protein 2 knockout mice have enhanced insulin secretory capacity after a high-fat diet. Diabetes 51: 3211-3219. https://doi.org/10.2337/diabetes.51.11.3211
  33. Endo A. 1992. The discovery and development HMG-CoA reductase inhibitors. J Lipid Res 32: 1569-1582.
  34. Kim HT, Park JY, Lee GG, Kim JH. 2003. Isolation of a bacteriocin-producing Lactobacillus plantarum strain from kimchi. Food Sci Biotechnol 12: 166-170.
  35. Tamang JP, Sarkar PK. 1996. Microbiology of mesu, a traditional fermented bamboo shoot product. Int J Food Microbiol 29: 49-58. https://doi.org/10.1016/0168-1605(95)00021-6
  36. Yadav H, Jain S, Sinha PR. 2007. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 23: 62-68. https://doi.org/10.1016/j.nut.2006.09.002
  37. Pereira DIA, Gibson GR. 2002. Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit Rev Biochem Mol Biol 37: 259-281. https://doi.org/10.1080/10409230290771519
  38. Simons LA, Amansec SG, Conway P. 2006. Effect of Lactobacillus fermentumon on serum lipids in subjects with elevated serum cholesterol. Nutr Metab Cardiovasc Dis 16:531-535. https://doi.org/10.1016/j.numecd.2005.10.009

Cited by

  1. Modified SJH alleviates FFAs-induced hepatic steatosis through leptin signaling pathways vol.7, 2017, https://doi.org/10.1038/srep45425
  2. Anti-adipogenic Effects of the Water Extracts of Defatted Green Tea Seed Cake vol.47, pp.4, 2015, https://doi.org/10.9721/KJFST.2015.47.4.525
  3. Microbial Change and Fermentation Characteristics during Samjung-Hwan Natural Fermentation vol.15, pp.2, 2015, https://doi.org/10.15429/jkomor.2015.15.2.123
  4. , produced in South Korea vol.82, pp.8, 2018, https://doi.org/10.1080/09168451.2018.1469395
  5. A Controlled Fermented Samjunghwan Herbal Formula Ameliorates Non-alcoholic Hepatosteatosis in HepG2 Cells and OLETF Rats vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00596
  6. 혼합추출 및 개별추출 방식의 삼정환의 항산화 및 항비만효과 vol.14, pp.2, 2013, https://doi.org/10.15429/jkomor.2014.14.2.47
  7. 삼정환의 랫드를 이용한 단회 경구투여 독성시험 vol.17, pp.2, 2017, https://doi.org/10.15429/jkomor.2017.17.2.96
  8. 김치에서 분리한 Lactobacillus plantarum K6의 생리적 특성 및 비만억제효과 vol.35, pp.4, 2013, https://doi.org/10.22424/jmsb.2017.35.4.221
  9. Lactobacillus fermentum SMFM2017-NK4 Isolated from Kimchi Can Prevent Obesity by Inhibiting Fat Accumulation vol.10, pp.4, 2021, https://doi.org/10.3390/foods10040772