DOI QR코드

DOI QR Code

Effect of Sea Buckthorn Leaves on Hepatic Enzyme Levels in Streptozotocin Induced Diabetic Rats

비타민나무잎 식이보충과 당뇨흰쥐 간장의 항산화효소 수준에 미치는 영향

  • Kim, Myung-Wha (Dept. of Food and Nutrition, Duksung Women's University)
  • 김명화 (덕성여자대학교 식품영양학과)
  • Received : 2012.11.12
  • Accepted : 2013.01.09
  • Published : 2013.01.31

Abstract

This study was designed to examine the effect of sea buckthorn (SBT) leaves on hepatic antioxidative enzyme levels in diabetic rats. Diabetes mellitus was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ). Sprague-Dawley rats were then fed for four weeks, with experimental groups receiving a modified diet containing 10% or 20% powder derived from SBT leaves. The experimental groups were divided into six groups: a normal (N)-control group, N-SBT 10% and N-SBT 20% treated groups, STZ-control, STZ-SBT 10% and STZ-SBT 20% treated groups. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione-S-transferase (GST) and xanthine oxidase (XOD) levels were measured in liver cytosol. The results showed that the level of SOD was significantly increased in the N-SBT 20% group but not statistically different in the diabetic group. The level of CAT was significantly higher in the N-SBT 20% group compared to the control group. The level of GPX was significantly increased in the N-SBT 20% group and the diabetic supplementary group. In contrast, the level of XOD was significantly decreased in the diabetic group supplemented with SBT leaves.

본 연구는 4주간 비타민나무잎을 식이에 보충하여 streptozotocin 당뇨흰쥐 간장의 cytosol에서 항산화효소 수준을 분석하여 다음과 같은 결과를 얻었다. 간장의 MDA 수준이 비타민나무잎 10% 첨가군에서는 정상실험군에서 유의적으로 낮은 수준을 보였고, 당뇨실험군에서는 유의적인 차이를 보이지 않았다. SOD 수준은 정상실험군에서는 정상대조군에 비해 비타민나무잎 20% 첨가군에서 유의적으로 높은 수준이었고 당뇨실험군에서는 당뇨대조군보다 높아지는 경향이었으나 유의성은 검증되지 않았다. CAT 수준은 정상실험군에서는 비타민나무잎 첨가 시 정상대조군에 비해 유의성이 검증되었고 비타민나무잎 10% 첨가군에서 높은 수준이었다. 당뇨실험군에서는 당뇨대조군에 비해 비타민나무잎 10% 첨가군에서 유의적으로 낮은 수준으로 비타민나무잎 보충정도에 따른 수준 차이를 보였다. GPX 수준은 정상대조군과 당뇨대조군 사이에는 유의적인 차이를 보였다. 정상실험군에서는 비타민나무잎 첨가 비율이 높은 20% 첨가군에서 유의적으로 수준이 높았으며 당뇨실험군에서는 당뇨대조군에 비해 모든 비타민나무잎 분말 첨가군에서 유의적으로 높은 수준이었다. GR의 수준은 각각의 실험군 사이에 유의적인 차이를 보이지 않았다. 생체내 유리기를 제거해주는 효소적 방어계인 GST 수준은 정상실험군에서는 비타민나무잎 10% 첨가군보다 20% 첨가군에서 유의적으로 낮은 수준이었고, 당뇨실험군에서는 당뇨대조군에 비해 모든 비타민나무잎 첨가군에서 유의적으로 낮은 수준이었다. 간장의 cytosol에서 생체 내 유리기 생성계의 하나인 XOD 수준은 정상실험군에서는 정상대조군에 비해 비타민나무잎 20% 첨가군에서 유의적으로 높은 수준이었고, 당뇨실험군에서는 당뇨대조군에 비해 비타민나무잎 첨가군 모두에서 유의적으로 낮은 수준을 보였다. 이상의 연구결과 비타민나무잎 분말을 식이로 첨가하였을 때 당뇨흰쥐 간장의 SOD 수준은 증가하는 경향을 보였으며, GPX 수준은 유의적으로 증가하였고 XOD 수준은 유의적으로 낮은 수준임을 확인할 수 있었다.

Keywords

References

  1. Reaven GM. 1988. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37: 1595-1607. https://doi.org/10.2337/diabetes.37.12.1595
  2. Abate N. 2000. Obesity and cardiovascular disease. Pathogenetic role of the metabolic syndrome and therapeutic implications. J Diabetes Complications 14: 154-174. https://doi.org/10.1016/S1056-8727(00)00067-2
  3. Kim J, Ahn CW. 2011. Diabetes management system based on ubiquitous healthcare. J Korean Diabetes 12: 133-137. https://doi.org/10.4093/jkd.2011.12.3.133
  4. Lim SC. 2012. Intervention strategies for older adults with diabetes. J Korean Diabetes 13: 52-55. https://doi.org/10.4093/jkd.2012.13.1.52
  5. Jeong JH, Lee JW, Kim KS, Kim JS, Han SN, Yu CY, Lee JK, Kwon YS, Lim MJ. 2010. Antioxidant and antimicrobial activities of extracts from a medicinal plant, sea buckthorn. J Korean Soc Appl Biol Chem 53: 33-38. https://doi.org/10.3839/jksabc.2010.006
  6. Baynes JW. 1991. Role of oxidative stress in the development of complication in diabetes. Diabetes 40: 405-421. https://doi.org/10.2337/diabetes.40.4.405
  7. Lee SA, Jo HK, Cho SH, Ko SK. 2010. Comparison of the contents of phenolic compounds of sea buckthorn (Hippophae rhamnoides) cultivated in Korea and Mongolia. Kor J Pharmacogn 41: 308-312.
  8. Pang X, Zhao J, Zhang W, Zhuang X, Wang J, Xu R, Xu Z, Qu W. 2008. Antihypertensive effect of total flavones extracted from seed residues of Hippophae rhamnoides L. in sucrose-fed rats. J Ethnopharmacol 117: 325-331. https://doi.org/10.1016/j.jep.2008.02.002
  9. Kim MW. 2010. Effect of sea buckthorn leave on plasma blood glucose and cholesterol level in streptozotocin induced diabetic rats. J East Asian Soc Dietary Life 20: 372-381.
  10. Reeves PG. 1997. Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127: 838S-841S.
  11. Junod A, Lambert AE, Stauffacher W, Renold AE. 1969. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest 48: 2129-2139. https://doi.org/10.1172/JCI106180
  12. Lenzen S. 2008. The mechanism of alloxan- and streptozotocin-induced diabetes. Diabetologia 51: 216-226. https://doi.org/10.1007/s00125-007-0886-7
  13. Mihara M, Uchiyama M. 1978. Determination of malondialdehyde precursor in tissue by thiobarbituric acid test. Anal Biochem 86: 271-278. https://doi.org/10.1016/0003-2697(78)90342-1
  14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-275.
  15. Maklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 467-474.
  16. Aebi H. 1984. Catalase in vitro. Methods Enzymol 105: 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  17. Lawrence RA, Burk RF. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Comm 71: 952-958. https://doi.org/10.1016/0006-291X(76)90747-6
  18. Mavis RD, Stellwagen E. 1968. Purification and subunit structure of glutathione reductase from baker's yeast. J Biol Chem 243: 809-814.
  19. Habig WH, Pabst MJ, Jakoby WB. 1974. Glutathione-Stransferases: The first enzymatic step in mercapturic acidformation. J Biol Chem 249: 7130-7139.
  20. Bergmeyer HU, Gawehn K, Grassl M. 1974. Methods of Enzymatic Analysis. 2nd ed. Bergmeter HU, ed. Academic Press Inc., New York, NY, USA. Vol 1, p 521-522.
  21. Suryakumar G, Gupta A. 2011. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). J Ethnopharmacol 138: 268-278. https://doi.org/10.1016/j.jep.2011.09.024
  22. Kim MW. 2004. Effects of Benincasa hispida seed supplementation on glycogen status and lipid peroxidation in streptozotocin-induced diabetic rats. Korean J Nutr 37:865-871.
  23. Maheshwari DT, Yogendra Kumar MS, Verma SK, Singh VK, Singh SN. 2011. Antioxidant and hepatoprotective activities of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves. Food Chem Toxicol 49: 2422-2428. https://doi.org/10.1016/j.fct.2011.06.061
  24. Kang NE, Kim WK. 1999. Effects of antioxidant vitamins supplementation on antioxidative status and plasma lipid profiles in Korean NIDDM patients. Korean J Nutr 32: 775-780.
  25. Kim KM, Park MH, Kim KH, Im SH, Park YW, Kim YN. 2009. Analysis of chemical composition and in vitro antioxidant properties of extracts from Sea Buckthorn (Hippophae rhamnoides). J Appl Biol Chem 52: 58-64. https://doi.org/10.3839/jabc.2009.011
  26. Ugochunkwu NH, Babady NE, Cobourne M, Gasset SR. 2003. The effect of Gongronema latifolium extracts on serum lipid profile and oxidative stress in hepatocytes of diabetic rats. J Biosci 28: 1-5. https://doi.org/10.1007/BF02970124
  27. Saggu S, Kumar R. 2008. Effect of sea buckthorn leaf extracts on circulating energy fuel, lipid peroxidation and antioxidant parameters in rats during exposure to cold, hypoxia and restraint (C-H-R) stress and post stress recovery. Phytomedicine 15: 437-446. https://doi.org/10.1016/j.phymed.2007.11.002
  28. Ting HC, Hsu YW, Tsai CF, Lu FJ, Chou MC, Chen WK. 2011. The in vitro and in vivo antioxidant properties of seabuckthorn (Hippophae rhamnoides L.) seed oil. Food Chem 125: 652-659. https://doi.org/10.1016/j.foodchem.2010.09.057
  29. Jang YS, Ahn HS, Kim HR. 1998. Effects of vitamin E supplementation on the lipid peroxides and activities of antioxidative enzymes in the pancreas of diabetic KK mice. Korean J Nutr 31: 153-158.
  30. Atalay M, Laaksonen DE, Niskanen L, Uusiyupa M, Hanninen O, Sen CK. 1997. Altered antioxidant enzyme defence in insulin-dependent diabetic men with increased resting and exercise-induced oxidative stress. Acta Phsiol Scand 161: 195-201. https://doi.org/10.1046/j.1365-201X.1997.00200.x
  31. Park SA, Choi MS, Jung UJ, Kim MJ, Kim DJ, Park HM, Park YB, Lee MK. 2006. Eucommia ulmoides oliver leaf extract increases endogenous antioxidant activity in type 2 diabetic mice. J Med Food 9: 474-479. https://doi.org/10.1089/jmf.2006.9.474
  32. Rashidi A, Kirkwood TB, Shanley DP. 2009. Metabolic evolution suggests an explanation for the weakness of antioxidant defences in beta-cells. Mech Ageing Dev 130: 216-221. https://doi.org/10.1016/j.mad.2008.12.007

Cited by

  1. Hypoglycemic and antioxidant effects of jaceosidin in streptozotocin-induced diabetic mice vol.47, pp.5, 2014, https://doi.org/10.4163/jnh.2014.47.5.313
  2. Effects of Dietary Supplementation with Allium hookeri Root on Hepatic Enzyme Contents in Streptozotocin-induced Diabetic Rats vol.27, pp.4, 2017, https://doi.org/10.17495/easdl.2017.8.27.4.399
  3. Effect of Sorbitol and Salicylic Acid on Quality and Functional Food Contents of Tomato Fruit (Solanum lycopersicum) vol.32, pp.6, 2014, https://doi.org/10.7235/hort.2014.14018
  4. 여주열매 첨가식이가 당뇨 흰쥐의 지질과 항산화효소 수준에 미치는 영향 vol.24, pp.6, 2013, https://doi.org/10.17495/easdl.2014.12.24.6.759
  5. Nutritional Components and Antioxidant Activities of Sea Buckthron (Hippophae rhamnoides L.) Leaf and Berry Extracts vol.28, pp.1, 2013, https://doi.org/10.17495/easdl.2018.2.28.1.31
  6. Analysis of bioactive compounds of three sea buckthorn cultivars (Hippophaë rhamnoides L. ‘Askola’, ‘Leikora’, and ‘Orangeveja’) with HPLC and spectrophotometr vol.84, pp.1, 2019, https://doi.org/10.17660/ejhs.2019/84.1.5
  7. 비타민나무(Sea Buckthorn, Hippophae rhamnoides) 잎 에탄올 농도별 추출물의 항산화활성 비교 vol.53, pp.1, 2013, https://doi.org/10.9721/kjfst.2021.53.1.55