DOI QR코드

DOI QR Code

Biological and Functional Characteristics of Lactic Acid Bacteria in Different Kimchi

김치 종류에 따른 유산균의 생물학적 및 기능적 특성

  • Ko, Kang Hee (Dept. of Food Engineering, Mokpo National University) ;
  • Liu, Wenli (Dept. of Food Engineering, Mokpo National University) ;
  • Lee, Hyun Hee (Dept. of Food Engineering, Mokpo National University) ;
  • Yin, Jie (Dept. of Food Engineering, Mokpo National University) ;
  • Kim, In Cheol (Dept. of Food Engineering, Mokpo National University)
  • 고강희 (목포대학교 식품공학과) ;
  • 유문려 (목포대학교 식품공학과) ;
  • 이현희 (목포대학교 식품공학과) ;
  • 은걸 (목포대학교 식품공학과) ;
  • 김인철 (목포대학교 식품공학과)
  • Received : 2012.09.14
  • Accepted : 2012.12.27
  • Published : 2013.01.31

Abstract

Biological and functional characteristics of lactic acid bacteria (LAB) were investigated in mustard stem/leaf kimchi (MK), cabbage kimchi (CK), young radish kimchi (YRK), and cubed radish kimchi (CRK). LAB of young radish kimchi were mainly composed of bacilli in contrast to the other kimchi. 89.2% LAB isolated from all kimchi harbored plasmids. However, LAB had an average of $4.1{\pm}0.5$ plasmid bands in YRK, more than MK, CK, and CRK. Exopolysaccharides were produced by 10.9~11.1% of LAB, and were especially by LAB isolated from radish kimchi. A significant percentage of LAB (69.5%) had antibacterial activity against one sensitive strain or more. LAB from CK, YRK and CRK had antimicrobial activities against Bacillus sp., Listeria monocytogenes, and Salmonella Typhimurium, while the LAB from MK had activities against Vibrio parahaemolyticus higher than those from the other kimchi. In YRK and CRK, acid-tolerant LAB were twice as prevalent as those in MK and CK. Bile-tolerant LAB isolated from CRK were more prevalent than other kimchi. When $10^8$ CFU of LAB were added to Caco-2 cells, 12.1% of LAB isolated from all kimchi showed similar adherent activity to Lactobacillus rhamnosus GG. LAB of MK particularly adhered to Caco-2 cells, 2.0~4.1 fold higher than LAB in the other kimchi. From these results, biological and functional characteristics of LAB varied according to the type of kimchi and LAB existing in kimchi were limited to their respective species.

갓김치, 배추김치, 열무김치, 깍두기로부터 348종의 유산균을 분리하여 각 김치 종류에 따른 유산균의 특징을 확인하였다. 열무김치의 유산균은 다른 3종의 김치에 비해 간균+단간균:구균의 비가 5.6:1로 구균의 함량이 적었다. Leuconostoc 속으로 추정되는 구균의 함량은 4종의 김치가 모두 유사하였으나 Lactobacillus 속으로 추정되는 간균과 단간균의 함량은 깍두기에서 60.7%로 높게 나타났다. 다른 김치에 비해 배추김치 유래 유산균 중 18.7%가 plasmid가 없었으나 plasmid를 지닌 유산균 중에는 열무김치 유래 유산균에 평균 $4.1{\pm}0.5$개의 plasmid bands가 나타났다. 세포 외 다당(EPS)을 5 mg/mL 이상 생산하는 유산균은 무를 주재료로 한 깍두기와 열무김치에 각각 11.1%, 10.9%로 갓김치와 배추김치보다 많았지만 배추김치 유래 유산균이 $8.4{\pm}2.0mg/mL$의 EPS를 생산해 다른 김치 유래 유산균들보다 1 mg이상 높았다. 갓김치에는 V. parahaemolyticus에 대한 항균력을 지닌 유산균이 많은 반면 열무김치, 배추김치, 깍두기에서 Bacillus 속, L. monocytogenes, Salmonella Typhimurium에 대해 항균력을 지닌 유산균이 갓김치보다 2배 이상으로 나타났다. 열무김치와 깍두기 유래 유산균 중 43.3%, 45.5%가 내산성을 지녔으며, 특히 깍두기의 유산균 중 36.3%가 내담즙성을 나타내 다른 김치보다 많았다. Caco-2 세포에 대한 장내부착능을 지닌 유산균은 18.6%의 비율로 갓김치에 가장 많았다. 이러한 결과에서 볼 때, 김치에 함유된 유산균은 종이 한정적임에도 불구하고 김치 종류에 따라 각 김치에 함유된 유산균의 생물학적 특징에 차이가 있었으며, 특히 내산성, 내담즙성, 장내부착능을 지닌 유산균이 김치에 따라 차이가 나타남으로써 본 연구의 결과가 프로바이오틱 기능성을 지닌 유산균을 선별하는데 유용한 자료가 될 것으로 기대된다.

Keywords

References

  1. Sybesma W, Hugenholtz J, de Vos WM, Smid EJ. 2006. Safe use of genetically modified lactic acid bacteria in food, bridging the gap between consumers, green groups, and industry. Electron J Biotechnol 9: 424-448.
  2. Lee CH, Ahn BS. 1995. Literature review on Kimchi, Korean fermented vegetable foods. I. History of Kimchi making. Korean J Dietary Culture 10: 311-319.
  3. Lee H, Yoon H, Ji Y, Kim H, Park H, Lee J, Shin H, Holzapfel W. 2011. Functional properties of Lactobacillus strains isolated from kimchi. Int J Food Microbiol 145: 155-161. https://doi.org/10.1016/j.ijfoodmicro.2010.12.003
  4. Jo JS, Hwang SY. 1988. Standardization of Kimchi and related products (2). Korean J Dietary Culture 3: 301-307.
  5. Han HU, Lim CR, Park HK. 1990. Determination of microbial community as an indicator of Kimchi fermentation. Korean J Food Sci Technol 22: 26-32.
  6. Kim M, Chun J. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int J Food Microbiol 103: 91-96. https://doi.org/10.1016/j.ijfoodmicro.2004.11.030
  7. Lee JS, Heo GY, Lee JW, Oh YJ, Park JA, Park YH, Pyun YR, Ahn JS. 2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int J Food Microbiol 102: 143-150. https://doi.org/10.1016/j.ijfoodmicro.2004.12.010
  8. Lee MK, Rhee KK, Kim JK, Kim SM, Jeong JW, Jang DJ. 2007. A survey of research papers on Korean Kimchi and R&D trends. Korean J Food Culture 22: 104-114.
  9. Lee JS, Chun CO, Hector M, Kim SB, Kim HJ, Park BK, Joo YJ, Lee HJ, Park CS, Ahn JS, Park YH, Mheen TI. 1997. Identification of Leuconostoc strains isolated from Kimchi using carbon-source utilization patterns. J Microbiol 35: 10-14.
  10. Rogosa M, Mitchell JA, Wiseman RF. 1951. A selective medium for the isolation and enumeration of oral and fecal lactobacilli. J Bacteriol 62: 132-133.
  11. Smitinont T, Tansakul C, Tanasupawat S, Keeratipibul S, Navarini L, Bosco M, Cescutti P. 1999. Exopolysaccharideproducing lactic acid bacteria strains from traditional Thai fermented foods; isolation, identification, and exopolysaccharide characterization. Int J Food Microbiol 51:105-111. https://doi.org/10.1016/S0168-1605(99)00094-X
  12. Mayr-Harting A, Hedges AJ, Berkeley RCW. 1972. Methods for studying bacteriocins. In Methods in Microbiology. Bergen DW, Norris JR, eds. Academic Press, New York, NY, USA. p 315-422.
  13. Pinto M, Robine-Leon S, Apay M, Kedinger M, Triadou N, Dussaulx E, Lacroix B, Simon-Assmann P, Haffen K, Fogh J, Zwelbaum A. 1983. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell 47: 323-330.
  14. Kimoto J, Kurisaki J, Tsuji NM, Ohmomo S, Okamoto T. 1999. Lactococci as probiotic strains: adhesion to human enterocyte-like Caco-2 cells and tolerance to low pH and bile. Lett Appl Microbiol 29: 313-316. https://doi.org/10.1046/j.1365-2672.1999.00627.x
  15. Bogovic MB, Naat M, Zoric M. 2003. Adhesion of two Lactobacillus gasseri probiotic strains on Caco-2 cells. Food Technol Biotechnol 41: 83-88.
  16. Blum S, Reniero R, Schiffrin EJ, Crittenden R, Mattila-Sandholm T, Ouwehand AC, Salminen S, von Wright A, Saarela M, Saxelin M, Collins K, Morelli L. 1999. Adhesion studies for probiotics: need for validation and refinement. Trends Food Sci Technol 10: 405-410. https://doi.org/10.1016/S0924-2244(00)00028-5
  17. Choi IK, Jung SH, Kim BJ, Park AY, Kim J, Han HU. 2003. Novel Leuconostoc citreum starter culture system for the fermentation of kimchi, a fermented cabbage product. Antonie Van Leeuwenhoek 84: 247-253. https://doi.org/10.1023/A:1026050410724
  18. Lee MK, Park WS, Kang KH. 1996. Selective media for isolation and enumeration of lactic acid bacteria from kimchi. J Korean Soc Food Sci Nutr 25: 754-768.
  19. Soomro AH, Masud T. 2007. Protein pattern and plasmid profile of lactic acid bacteria isolated from dahi, a traditional fermented milk product of Pakistan. Food Technol Biotechnol 45: 447-453.
  20. Yoon SS, Kim C. 2001. Development of host-vector systems for lactic acid bacteria. Korean J Appl Microbiol Biotechnol 29: 1-11.
  21. Veljovic K, Terzic-Vidojevic A, Vukasinovic M, Strahinic I, Begovic J, Lozo J, Ostojic M, Topisirovic L. 2007. Preliminary characterization of lactic acid bacteria isolated from Zlatar cheese. J Appl Microbiol 103: 2142-2152. https://doi.org/10.1111/j.1365-2672.2007.03450.x
  22. Ricci G, Borgo F, Fortina MG. 2006. Plasmids from Lactobacilus helveticus: distribution and diversity among natural isolates. Lett Appl Microbiol 42: 245-258.
  23. Ruas-Madiedo P, Moreno JA, Salazar N, Delgado S, Mayo B, Margolles A, de los Reyes-Gavilan CG. 2007. Screening of exopolysaccharide producing Lactobacillus and Bifidobacterium strains isolated from the human intestinal microbiota. Appl Environ Microbiol 73: 4385-4388. https://doi.org/10.1128/AEM.02470-06
  24. Montersino S, Prieto A, MuNoz R, de Las Rivas B. 2008. Evaluation of exopolysaccharide production by Leuconostoc mesenteroides strains isolated from wine. J Food Sci 73:M196-M199. https://doi.org/10.1111/j.1750-3841.2008.00726.x
  25. Van der Meulen R, Grosu-Tudor S, Mozzi F, Vaningelgem F, Zamfir M, de Valdez GF, De Vuyst L. 2007. Screening of lactic acid bacteria isolates from dairy and cereal products for exopolysaccharide production and genes involved. Int J Food Microbiol 118: 250-258. https://doi.org/10.1016/j.ijfoodmicro.2007.07.014
  26. Bauer R, Bekker JP, Wyk Nv, du Toit C, Dicks LM, Kossmann J. 2009. Exopolysaccharide production by lactose-hydrolyzing bacteria isolated from traditionally fermented milk. Int J Food Microbiol 131: 260-264. https://doi.org/10.1016/j.ijfoodmicro.2009.02.020
  27. Mozzi F, Vaningelgem F, Hebert EM, Van der Meulen R, Moreno MRF, Font de Valdez G, De Vuyst L. 2006. Diversity oif heteropolysaccharide producing lactic acid bacerium strains and their biopolymers. Appl Environ Microbiol 72:4431-4435. https://doi.org/10.1128/AEM.02780-05
  28. Galle S, Schwab C, Arendt E, Ganzle M. 2010. Exopolysaccharide- forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58:5834-5841. https://doi.org/10.1021/jf1002683
  29. Patricia RM, Hugenholtz J, Zoon P. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J 12: 163-171. https://doi.org/10.1016/S0958-6946(01)00160-1
  30. Kaur IP, Chopra K, Saini A. 2002. Probiotics; potential pharmaceutical applications. Eur J Pharm Sci 15: 1-9. https://doi.org/10.1016/S0928-0987(01)00209-3
  31. Galvez A, Abriouel H, Lopez RL, Ben Omar N. 2007. Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120: 51-70. https://doi.org/10.1016/j.ijfoodmicro.2007.06.001
  32. Guo XH, Kim JM, Nam HM, Park SY, Kim JM. 2010. Screening lactic acid bacteria from swine origins for multistrain probiotics based on in vitro functional properties. Anaerobe 16: 321-326. https://doi.org/10.1016/j.anaerobe.2010.03.006
  33. Jacobsen CN, Nielsen VR, Hayford AE, Moller PL, Michaelsen KF, PErregaard A, Sandstrom B, Tvede M, Jakobsen M. 1999. Screening of probiotic activities of fortyseven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in human. Appl Environ Microbiol 65: 4949-4956.
  34. Ahn DK, Han TW, Shin HY, Jin IN, Ghim SY. 2003. Diversity and antibacterial activity of lactic acid bacteria isolated from kimchi. Korean J Microbiol Biotechnol 31:191-196.
  35. Galeano B, Korff E, Nicholson WL. 2003. Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation. Appl Environ Microbiol 69: 4329-4331. https://doi.org/10.1128/AEM.69.7.4329-4331.2003
  36. Kang CH, Chung KO, Ha DM. 2002. Inhibitory effect on the growth of intestinal pathogenic bacteria by kimchi fermentation. Korean J Food Sci Technol 34: 480-486.
  37. Ouwehand AC, Kirjavainen PV, Shortt C. Salminen S. 1999. Probiotics; mechanisms and established effects. Int Dairy J 9: 43-52. https://doi.org/10.1016/S0958-6946(99)00043-6
  38. Koll P, Mandar R, Smidt I, Hutt P, Truusalu K, Mikelsaar RH, Shchepetova J, Krogh-Andersen K, Marcotte H, Hammarstrom L, Mikelsaar M. 2010. Screening and evaluation of human intestinal lactobacilli for the development of novel gastrointestinal probiotics. Curr Microbiol 61: 560-566. https://doi.org/10.1007/s00284-010-9653-y
  39. Nur YZ, Aslim B. 2010. Assessment of potential probioticand starter properties of Pediococcus spp. isolated from Turkish-type fermented sausages (sucuk). J Microbiol Biotechnol 20: 161-168. https://doi.org/10.4014/jmb.0904.04019
  40. Delgado S, O'Sullivan E, Fitzgerald G, Mayo B. 2007. Subtractive screening for probiotic properties of Lactobacillus species from the human gastrointestinal tract in the search for new probiotics. J Food Sci 72: M310-M315. https://doi.org/10.1111/j.1750-3841.2007.00479.x
  41. Todorov SD, Botes M, Guigas C, Schillinger U, Wiid I, Wachsman MB, Holzapfel WH. 2007. Boza, a natural source of probiotic lactic acid bacteria. J Appl Microbiol 104: 465-477.
  42. Zago M, Fornasari ME, Carminati D, Burns P, Suarez V, Vinderola G, Reinheimer J, Giraffa G. 2011. Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol 28: 1033-1040. https://doi.org/10.1016/j.fm.2011.02.009
  43. Tuomola EM, Salminen SJ. 1998. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int J Food Microbiol 41: 45-51. https://doi.org/10.1016/S0168-1605(98)00033-6
  44. Buck BL, Altermann E, Svingerud T, Kaenhammer TR. 2005. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71: 8344-8351. https://doi.org/10.1128/AEM.71.12.8344-8351.2005

Cited by

  1. Lactococcus lactisKR-050L inhibit IL-6/STAT3 activation vol.122, pp.5, 2017, https://doi.org/10.1111/jam.13444
  2. A Study on the Kimchi Consumption of Korean Adults:Using Korea National Health and Nutrition Examination Survey (2010~2012) vol.30, pp.4, 2015, https://doi.org/10.7318/KJFC/2015.30.4.406
  3. Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02 vol.21, pp.1, 2016, https://doi.org/10.3746/pnf.2016.21.1.52
  4. The Anti-inflammatory Effects of Probiotic-produced Exopolysaccharide vol.25, pp.6, 2015, https://doi.org/10.5352/JLS.2015.25.6.709
  5. Antibacterial activity of lactic acid bacteria isolated from traditional fermented foods and development of a starter for fermented milk vol.20, pp.5, 2013, https://doi.org/10.11002/kjfp.2013.20.5.712
  6. Relationship Between Plant Food (Fruits, Vegetables, and Kimchi) Consumption and the Prevalence of Rhinitis Among Korean Adults: Based on the 2011 and 2012 Korea National Health and Nutrition Examination Survey Data vol.19, pp.12, 2016, https://doi.org/10.1089/jmf.2016.3760
  7. Quality Characteristics of Baguette using Fermented Rice Bran Sourdough vol.30, pp.3, 2014, https://doi.org/10.9724/kfcs.2014.30.3.307
  8. Characteristics of Lactic Acid Fermentation of Black Raspberry Juice Using the Lactobacillus plantarum GBL17 Strain vol.31, pp.6, 2015, https://doi.org/10.9724/kfcs.2015.31.6.773
  9. Quality characteristics of kimchi with Artemisia annua extracts vol.22, pp.5, 2015, https://doi.org/10.11002/kjfp.2015.22.5.666
  10. Analysis of Kimchi, vegetable and fruit consumption trends among Korean adults: data from the Korea National Health and Nutrition Examination Survey (1998-2012) vol.10, pp.2, 2016, https://doi.org/10.4162/nrp.2016.10.2.188
  11. Exploration of optimal Lactobacillus plantarum strains for curdling milk for yogurt and evaluation of physicochemical and sensory properties vol.48, pp.6, 2016, https://doi.org/10.9721/KJFST.2016.48.6.548
  12. Production and Fermentation Characteristics of Mukeunji with a Mixed Starter vol.42, pp.9, 2013, https://doi.org/10.3746/jkfn.2013.42.9.1467
  13. 무화과(Fig) 효소를 첨가한 유산균을 이용하여 알코올 대사활성 함유 치즈의 제조 vol.49, pp.2, 2017, https://doi.org/10.9721/kjfst.2017.49.2.141
  14. 전통 발효 식품에서 분리한 유산균을 이용한 yogurt 발효특성 vol.24, pp.5, 2013, https://doi.org/10.11002/kjfp.2017.24.5.707
  15. 요양병원환자에게 적용한 김치유산균 함유 동치미즙의 구강간호효과: 클로르헥시딘 용액과의 비교 vol.47, pp.4, 2017, https://doi.org/10.4040/jkan.2017.47.4.540
  16. Lactobacillus plantarum B19 Isolated from Kimchi and Characteristics of Organic Acid Production in Fermented Soymilk vol.29, pp.3, 2013, https://doi.org/10.17495/easdl.2019.6.29.3.198
  17. 전통 김치로부터 Probiotic 유산균의 분리 및 우유 발효 특성 vol.37, pp.2, 2013, https://doi.org/10.22424/jmsb.2019.37.2.115
  18. Effect of ethanol extract from chestnut flower on nitrite content in pickles vol.2009, pp.1, 2013, https://doi.org/10.1088/1742-6596/2009/1/012051
  19. 티베트 요거트에서 분리한 유산균의 병원성 세균 항균 효과 연구 vol.39, pp.3, 2013, https://doi.org/10.22424/jdsb.2021.39.3.121