DOI QR코드

DOI QR Code

Carbon Nanotube Synthesis and Growth Using Zeolite by Catalytic CVD and Applications

  • Zhao, Wei (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University) ;
  • Nam, Seo Dong (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University) ;
  • Pokhrel, Ashish (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University) ;
  • Gong, Jianghong (Department of Materials Science and Engineering, Tsinghua University) ;
  • Kim, Ik Jin (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University)
  • Received : 2012.04.18
  • Accepted : 2012.12.14
  • Published : 2013.01.31

Abstract

Since their first discovery, carbon nanotubes (CNTs) have become a material central to the field of nanotechnology. Owing to their splendid physical, structural and chemical properties, they have the potential to impact a wide range of applications, including advanced ceramics, nanoelectronic devices, nanoscale sensors, solar cells, battery electrodes, and field emitters. This review summarizes the synthetic methods of preparing CNTs and focuses on the chemical vapor deposition (CVD) method, especially catalytic CVD. In order to stabilize and disperse the catalyst nanoparticles (NPs) during synthesis, zeolite was implemented as the template to support metal-containing NPs, so that both CNTs in the bulk and on a 2D substrate were successfully synthesized. Despite more challenges ahead, there is always hope for widespread ever-new applications for CNTs with the development of technology.

Keywords

References

  1. N. N. Greenwood and E. Earnshaw, "Chemistry of the Elements," 299-307, Butterworth-Heinermann, 1984.
  2. S. J. Tans, A. R. M. Verschueren, and C. Dekker, "Roomtemperature Transistor based on a Single Carbon Nanotube," Nature, 393 49-52 (1998). https://doi.org/10.1038/29954
  3. M. Reibold, P. Paufler, A. A. Levin, W. Kochmann, N. Patzke, and D. C. Meyer, "Materials: Carbon Nanotubes in an Ancient Damascus Sabre," Nature, 444 286-6 (2006). https://doi.org/10.1038/444286a
  4. T. V. Hughes and C. R. Chambers, "Manufacture of Carbon Filaments," USA Patent No. 405 480 (1889).
  5. A. Oberlin, M. Endo, and T. Koyama, "Filamentous Growth of Carbon through Benzene Decomposition," J. Cryst. Growth, 32 335-49 (1976). https://doi.org/10.1016/0022-0248(76)90115-9
  6. S. Iijima, "Helical Microtubules of Graphitic Carbon," Nature, 354 56-8 (1991). https://doi.org/10.1038/354056a0
  7. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, "Cobalt-catalysed Growth of Carbon Nanotubes with Single-atomic-layer Walls," Nature, 363 605-7 (1993). https://doi.org/10.1038/363605a0
  8. S. Iijima and T. Ichihashi, "Single-shell Carbon Nanotubes of 1-nm Diameter," Nature, 363 603-5 (1993). https://doi.org/10.1038/363603a0
  9. A. P. Graham, G. S. Duesberg, W. Hoenlein, F. Kreupl, M. Liebau, R. Martin, B. Rajasekharan, W. Pamler, R. Seidel, W. Steinhoegl, and E. Unger, "How do Carbon Nanotubes Fit into the Semiconductor Roadmap?," Appl. Phys. A: Mater. Sci. Process., 80 1141-51 (2005). https://doi.org/10.1007/s00339-004-3151-7
  10. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, "Physical Properties of Carbon Nanotubes," 47-99, Imperial College Press, London, 1998.
  11. G. D. Nessim, "Properties, Synthesis, and Growth Mechanisms of Carbon Nanotubes with Special Focus on Thermal Chemical Vapor Deposition," Nanoscale, 2 1306-23 (2010). https://doi.org/10.1039/b9nr00427k
  12. Z. Xu, X. D. Bai, Z. L. Wang, and E. G. Wang, "Multiwall Carbon Nanotubes Made of Monochirality Graphite Shells," J. Am. Chem. Soc., 128 1052-3 (2006). https://doi.org/10.1021/ja057303j
  13. H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, and P. M. Ajayan, "Direct Synthesis of Long Single-walled Carbon Nanotube Strands," Science, 296 884-6 (2002). https://doi.org/10.1126/science.1066996
  14. "The longest carbon nanotubes you've ever seen," http:// www.nsf.gov/news/news_summ.jsp?cntn_id=108992.
  15. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, "Science of Fullerenes and Carbon Nanotubes," 15-54, Academic Press, SanDiego, 1996.
  16. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, "Optical Properties of Singlewall Carbon Nanotubes," Synth. Met., 103 2555-8 (1999). https://doi.org/10.1016/S0379-6779(98)00278-1
  17. C. H. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, "Thermal Conductance and Thermopower of an Individual Single- wall Carbon Nanotube," Nano. Lett., 5 1842-6 (2005). https://doi.org/10.1021/nl051044e
  18. C. Dekker, "Carbon Nanotubes as Molecular Quantum Wires," Phys. Today, 52 22-8 (1999).
  19. P. L. McEuen, "Single-wall Carbon Nanotubes," Phys. World, 13 31-6 (2000).
  20. P. G. Collins, A. Zettle, H. Bando, A. Thess, and R. E. Smalley, "Nanotube Nanodevice," Science, 278 100-2 (1997). https://doi.org/10.1126/science.278.5335.100
  21. R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, "Carbon Nanotube Actuators," Science, 284 1340-4 (1999). https://doi.org/10.1126/science.284.5418.1340
  22. H. Dai, "Controlling Nanotube Growth," Phys. World, 13 43-7 (2000).
  23. C. Liu, Y. Tong, H. M. Cheng, D. Golberg, and Y. Bando, "Field Emission Properties of Macroscopic Single-walled Carbon Nanotube Strands," Appl. Phys. Lett., 86, 223114 (1-2) (2005).
  24. J. Kong, E. Yenilmez, T. W. Tombler, W. Kim, H. J. Dai, R. B. Laughlin, L. Liu, C. S. Jayanthi, and S. Y. Wu, "Quantum Interference and Ballistic Transmission in Nanotube Electron Waveguides," Phys. Rev. Lett., 87 106801 (1-4) (2001). https://doi.org/10.1103/PhysRevLett.87.106801
  25. C. W. Zhou, J. Kong, and H. J. Dai, "Electrical Measurements of Individual Semiconducting Single-walled Carbon Nanotubes of Various Diameters," Appl. Phys. Lett., 76 1597-9 (2000). https://doi.org/10.1063/1.126107
  26. D. Yokoyama, T. Iwasaki, K. Ishimaru, S. Sato, T. Hyakushima, M. Nihei, Y. Awano, and H. Kawarada, "Electrical Properties of Carbon Nanotubes Grown at a Low Temperature for Use as Interconnects," Jpn. J. Appl. Phys., 47 1985-90 (2008) https://doi.org/10.1143/JJAP.47.1985
  27. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. J. Dai, "Ballistic Carbon Nanotube Field-effect Transistors," Nature, 424 654-7 (2003). https://doi.org/10.1038/nature01797
  28. P. Avouris, "Molecular Electronics with Carbon Naontubes," Acc. Chem. Res., 35 1026-34 (2002). https://doi.org/10.1021/ar010152e
  29. A. D. Carlo, A. Pecchia, E. Petrolati, and C. Paoloni, in Nanomodeling II, pp. 632808-11, SPIE, San Diego, CA, USA 2006.
  30. A. Naeemi and J. D. Meindl, "Design and Performance Modeling for Single-walled Carbon Nanotubes as Local, Semiglobal, and Global Interconnects in Gigascale Integrated Systems," IEEE Trans. Electron. Dev., 54 26-37 (2007). https://doi.org/10.1109/TED.2006.887210
  31. P. C. Collins, M. S. Arnold, and P. Avouris, "Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown," Science, 292 706-9 (2001). https://doi.org/10.1126/science.1058782
  32. S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, "Carbon Nanotube Quantum Resistors," Science, 280 1744-6 (1998). https://doi.org/10.1126/science.280.5370.1744
  33. A. Naeemi and J. D. Meindl, "Compact Physical Models for Multiwall Carbon Nanotube Interconnects," IEEE Electron Device Lett., 27 338-40 (2006). https://doi.org/10.1109/LED.2006.873765
  34. H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, and C. Z. Gu, "Multichannel Ballistic Transport in Multiwall Carbon Nanotubes," Phys. Rev. Lett., 95 086601 (1-4) (2005). https://doi.org/10.1103/PhysRevLett.95.086601
  35. J. P. Lu, "Elastic Properties of Carbon Nanotubes and Nanoropes," Phys. Rev. Lett., 79 1297-300 (1997). https://doi.org/10.1103/PhysRevLett.79.1297
  36. J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kuik, L. Forro, W. Benoit, and L. Zuppiroli, "Mechanical Properties of Carbon Nanotubes," Appl. Phys. A: Mater. Sci. Process., 69 255-60 (1999). https://doi.org/10.1007/s003390050999
  37. E. T. Thostenson, Z. Ren, and T. W. Chou, "Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review," Comp. Sci. Tech., 61 1899- 912 (2001). https://doi.org/10.1016/S0266-3538(01)00094-X
  38. M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, "Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties," Phys. Rev. Lett., 84 5552-5 (2000). https://doi.org/10.1103/PhysRevLett.84.5552
  39. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, "Young's Modulus of Single-walled Nanotubes," Phys. Rev. B: Condens. Matter, 58,14013-9 (1998). https://doi.org/10.1103/PhysRevB.58.14013
  40. G. Zhou, W. Duan, and B. Gu, "First-principles Study on Morphology and Mechanical Properties of Single-walled Carbon Nanotubes," Chem. Phys. Lett., 333 344-9 (2001). https://doi.org/10.1016/S0009-2614(00)01404-4
  41. Z. Yao, C. C. Zhu, M. Cheng, and J. Liu, "Mechanical Properties of Carbon Nanotube by Molecular Dynamics Simulation," Comput. Mater. Sci., 22 180-4 (2001). https://doi.org/10.1016/S0927-0256(01)00187-2
  42. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A Zettl, and R. O. Ritchie, "Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes," Mater. Sci. Eng. A, 334 173-8 (2002). https://doi.org/10.1016/S0921-5093(01)01807-X
  43. M. Endo, T. Hayashi, Y. A. Kim, M. Terrones, and M. S. Dresselhaus, "Applicaions of Carbon Nanotubes in the Twenty-first Century," Phil. Trans. R. Soc. Lond. A, 362 2223-38 (2004). https://doi.org/10.1098/rsta.2004.1437
  44. J. Hone, M. Whitney, and A. Zettl, "Thermal Conductivity of Single-walled Carbon Nanotubes," Synth. Met., 103 2498-9 (1999). https://doi.org/10.1016/S0379-6779(98)01070-4
  45. E. Pop, D. Mann, Q. Wang, K. Goodson, and H. J. Dai, "Thermal Conductance of an Individual Single-wall Carbon Nanotube above Room Temperature," Nano. Lett., 6 96-100 (2006). https://doi.org/10.1021/nl052145f
  46. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, "Thermal Transport Measurements of Individual Multiwalled Nanotubes," Phys. Rev. Lett., 87 215502 (1-4) (2001).
  47. W. A. de Heer, A. Chatelain, and D. Ugarte, "A Carbon Nanotube Field Emission Electron Source," Science, 270 1179-80 (1995). https://doi.org/10.1126/science.270.5239.1179
  48. R. H. Fowler and L. Nordheim, "Electron Emission in Intense Electric Fields," Proc. R. Soc. London, Ser. A, 119, 173-81 (1928). https://doi.org/10.1098/rspa.1928.0091
  49. S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai, "Self-oriented Regular Arrays of Carbon Nanotubes and their Field Emission Properties," Science, 283 512-4 (1999). https://doi.org/10.1126/science.283.5401.512
  50. Y. Cheng. and O. Zhou, "Electron Field Emission from Carbon Nanotubes," C. R. Physique, 4 1021-33 (2003). https://doi.org/10.1016/S1631-0705(03)00103-8
  51. N. S. Lee, D. S. Chung, I. T. Han, J. H. Kang, Y. S. Choi, H. Y. Kim, S. H. Park, Y. W. Jin, W. K. Yi, M. J. Yun, J. E. Jung, C. J. Lee, J. H. You, S. H. Jo, C. G. Lee, and J. M. Kim, "Application of Carbon Nanotubes to Field Emission Displays," Diamond and Related Materials, 10 265-70 (2001). https://doi.org/10.1016/S0925-9635(00)00478-7
  52. H. W. Zhu, J. Q. Wei, K. L. Wang, and D. H. Wu, "Applications of Carbon Materials in Photovoltaic Solar Cells," Solar Energy Materials and Solar Cells, 93 1461-70 (2009). https://doi.org/10.1016/j.solmat.2009.04.006
  53. "Carbon nanotubes in photovoltaics," Wikepedia,(the free encyclopedia) http://en.wikipedia.org/wiki/Carbon_nanotubes_ in_ photovoltaics.
  54. E. Kymakis, I. Alexandrou, and G. A. J. Amaratunga, "High Open-circuit Voltage Photovoltaic Devices from Carbon-nanotube-polymer Composites," Progress in Photovoltaics: Res. Appl., 93, 1764-8 (2003).
  55. S. Barazzouk, S. Hotchandani, K. Vinodgopal, and P. V. Kamat, "Single-wall Carbon Nanotube Films for Photocurrent Generation. A Prompt Response to Visible-light Irradiation," J. Phys. Chem. B, 108 17015-8 (2004). https://doi.org/10.1021/jp0458405
  56. P. Castrucci, F. Tombolini, M. Scarselli, E. Speiser, S. D. Gobbo, W. Richter, M. D. Crescenzi, M. Diociaiuti, E. Gatto, and M. Venanzi, "Large Photocurrent Generation in Multiwall Carbon Nanotubes," Appl. Phys. Lett., 89 253107 (2006). https://doi.org/10.1063/1.2408648
  57. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, "Solid C60: A New Form of Carbon," Nature, 347 354-8 (1990). https://doi.org/10.1038/347354a0
  58. B. I. Yakobson, and R. E. Smalley, "Fullerene Nanotubes: $C_{1,000,000}$ and Beyond," Am. Sci., 85 324-37 (1997).
  59. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, "Catalytic Growth of Single-walled Nanotubes by Laser Vaporization," Chem. Phys. Lett., 243 49-54 (1995). https://doi.org/10.1016/0009-2614(95)00825-O
  60. P. Eklund, A. Pulickel, R. Blackmon, A. J. Hart, J. Kong, P. Bhabendra, A. Rao, and R. Rinzler, International Assessment of Research and Development n carbon Nanotubes: Manufacturing and Applications, World Technology Evaluation Center, Baltimore, Maryland 21210, USA, 2007, http://www.wtec.org/cnm/.
  61. W. Zhao, D. N. Seo, H. T. Kim, I. J. Kim, "Characterization of Multi-walled Carbon Nanotubes (MWNTs) Synthesized by CCVD using Zeolite Template from Acetylene," J. Ceram. Soc. Jpn, 118 983-8 (2010). https://doi.org/10.2109/jcersj2.118.983
  62. K. P. De Jong and J. W. Geus, "Carbon Nanofibers: Catalytic Synthesis and Application," Catal. Rev.-Sci. Eng., 42 481-510 (2000). https://doi.org/10.1081/CR-100101954
  63. J. Kong, A. M. Cassell, and H. J. Dai, "Chemical Vapor Deposition of Methane for Single-walled Carbon Nanotubes," Chem. Phys. Lett., 292 567-74 (1998). https://doi.org/10.1016/S0009-2614(98)00745-3
  64. J. H. Hafner, M. J. Bronikowski, B. R. Azomian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, and R. E. Smalley, "Catalytic Growth of Single-wall Carbon Nanotubes from Metal Particles," Chem. Phys. Lett., 296 195-202 (1998). https://doi.org/10.1016/S0009-2614(98)01024-0
  65. P. M. Ajayan, "Nanotubes from Carbon," Chem. Rev., 99 1787-9 (1999). https://doi.org/10.1021/cr970102g
  66. M. Cinke, J. Li, B. Chen, A. Cassell, L. Delzeit, J. Han, and M. Meyyappan, "Pore Structure of Raw and Purified HiPco Single-walled Carbon Nanotubes," Chem. Phys. Lett., 365 69-74 (2002). https://doi.org/10.1016/S0009-2614(02)01420-3
  67. Z. Yao, C. L. Kane, and C. Dekker, "High-field Electrical Transport in Single-wall Carbon Nanotubes," Phys. Rev. Lett., 84 2941-4 (2000). https://doi.org/10.1103/PhysRevLett.84.2941
  68. J. Hone, M. Whitney, C. Piskoti, and A. Zett, "Thermal Conductivity of Single-walled Carbon Nanotubes," Phys. Rev. B, 59 R2514-6 (1999). https://doi.org/10.1103/PhysRevB.59.R2514
  69. S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, and R. C. Haddon, "Chemistry of Singlewalled Carbon Nanotubes," Acc. Chem. Res., 35 1105-13 (2002). https://doi.org/10.1021/ar010155r
  70. E. T. Thosterson, C. Li, and T. W. Chou, "Nanocomposites in Context," Compos. Sci. Technol., 65 491-516 (2005). https://doi.org/10.1016/j.compscitech.2004.11.003
  71. M. Ouyang, J. L. Huang, and C. M. Lieber, "Fundamental Electronic Properties and Applications of Single-walled Carbon Nanotubes," Acc. Chem. Res. 35, 1018-25 (2002). https://doi.org/10.1021/ar0101685
  72. W. A. de Heer, A. Chatelain, and D. Ugarte, "A Carbon Nanotube Field-emission Electron Source," Science, 270 1179-80 (1995). https://doi.org/10.1126/science.270.5239.1179
  73. J. M. Bonard, J. P. Salvetat, T. Stockli, W. A. deHeer, L. Forro, and A. Chatelain, "Field Emission from Single-wall Carbon Nanotube Films," Appl. Phys. Lett., 73 918-20 (1998). https://doi.org/10.1063/1.122037
  74. M. L. Toebes, J. H. Bitter, A. J. van Dillen, and K. P. de Jong, "Impact of the Structure and Reactivity of Nickel Particles on the Catalytic Growth of Carbon Nanofibers," Catal. Today, 76 33-42 (2002). https://doi.org/10.1016/S0920-5861(02)00209-2
  75. W. Zhao, M. J. Lee, H. T. Kim, and I. J. Kim, "The Synthesis of Carbon Nanotubes (CNTs) by Catalytic CVD Using A Fe/co-supported Zeolite Template," Electro. Mater. Lett., 7 139-44 (2011). https://doi.org/10.1007/s13391-011-0609-6
  76. H. Ago, S. Imamura, T. Okazaki, T. Saitoj, M. Yumura, and M. Tsuji, "CVD Growth of Single-walled Carbon Nanotubes with Narrow Diameter Distribution over Fe/MgO Catalyst and their Fluorescence Spectroscopy," J. Phys. Chem. B, 109 10035-41 (2005). https://doi.org/10.1021/jp050307q
  77. K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, "Water-assisted Highly Efficient Synthesis of Impurity-free Single-walled Carbon Nanotubes," Science, 306 1362-4 (2004). https://doi.org/10.1126/science.1104962
  78. R. Andews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. dickey, and J. Chen, "Continuous Production of Aligned Carbon Nanotubes: A Step Closer to Commercial Realization," Chem. Phys. Lett., 303 467-74 (1999). https://doi.org/10.1016/S0009-2614(99)00282-1
  79. B. Kitiyanan, W. E. Alvarez, J. H. Harwell, and D. E. Resasco, "Controlled Production of Single-wall Carbon Nanotubes by Catalytic Decomposition of CO on Bimetallic Co- Mo Catalysts," Chem. Phys. Lett., 317 497-503 (2000). https://doi.org/10.1016/S0009-2614(99)01379-2
  80. D. Ding, J. Wang, Z. Cao, and J. Dai, "Synthesis of Carbon Nanostructures on Nanocrystalline $Ni-Ni_{3}P$ Catalyst Supported by SiC Whiskers," Carbon, 41 579-82 (2003). https://doi.org/10.1016/S0008-6223(02)00339-1
  81. C. L. Cheung, A. Kurtz, H. Park, and C. M. Lieber, "Diameter Controlled Synthesis of Carbon Nanotubes," J. Phys. Chem. B, 106 2429-33 (2002). https://doi.org/10.1021/jp0142278
  82. I. Willems, Z. Konya, J. F. Colomer, G. V. Tendeloo, N. Nagaraju, A. Fonseca, and J. B. Nagy, "Control of Outer Diameter of Thin Carbon Nanotubes Synthesized by Catalytic Decomposition of Hydrocarbons," Chem. Phys. Lett., 317 71-6 (2000). https://doi.org/10.1016/S0009-2614(99)01300-7
  83. M. Kumar and Y. Ando, "Controlling the Diameter Distribution of Carbon Nanotubes Grown from Camphor on a Zeolite Support," Carbon, 43 533-40 (2005). https://doi.org/10.1016/j.carbon.2004.10.014
  84. J. Ward, B. Q. Wei, and P. M. Ajayan, "Substrate Effects on the Growth of Carbon Nanotubes by Thermal Decomposition of Methane," Chem. Phys. Lett., 376 717-25 (2003). https://doi.org/10.1016/S0009-2614(03)01067-4
  85. M. Karthik, A. Vinu, A. K. Tripathi, N. M. Gupta, M. Palanichamy, and V. Murugesan, "Synthesis, Characterization and Catalytic Performance of Mg and Co Substituted Mesoporous Aluminophosphates," Micropor. Mesopor. Mater., 70 15-25 (2004). https://doi.org/10.1016/j.micromeso.2004.02.012
  86. H. J. Lee, Y. M. Kim, O. S. Kweon, and I. J. Kim, "Structural and Morphological Transformation of NaX Zeolite Crystals at High Temperature," J. Eur. Ceram. Soc., 27 561-4 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.156
  87. I. J. Kim, W. Zhao, X. Fan, J. H. Chang, and L. J. Gauckler, "Effect of the $TEOS/Al(i-pro)_{3}$ Mol Ratio in the Composition on the Crystal Morphology of Zeolites," J. Ceram. Res. Proc., 11 158-63 (2010).
  88. W. Zhao, M. J. Lee, H. T. Kim, and I. J. Kim, "The Synthesis of Carbon Nanotubes (CNTs) by Catalytic CVD Using Fe/Co-supported Zeolite Template," Electro. Mater. Lett., 7 139-44 (2011). https://doi.org/10.1007/s13391-011-0609-6
  89. W. Zhao, D. N. Seo, H. S. Kim, H. T. Kim, and I. J. Kim, "Carbon Nanotubes Synthesized by Catalytic Chemical Vapour Deposition Using Fe-supported Zeolite," Asian J. Chem., 23 2314-8 (2011).
  90. C. M. Veziri, G. N. Karanikolos, G. Pilatos, E. C. Vermisoglou, K. Giannakopoulos, C. Stogios, and N. K. Kanellopoulos, "Growth and Morphology Manipulation of Carbon Nanostructures on Porous Supports," Carbon, 47 2161-73 (2009). https://doi.org/10.1016/j.carbon.2009.03.064
  91. K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, A. Fudala, and A.A. Lucas, "Catalytic Synthesis of Carbon Nanotubes Using Zeolite Support," Zeolites, 17 416-23 (1996). https://doi.org/10.1016/S0144-2449(96)00088-7
  92. A. Fonseca, K. Hernadi, J. B. Nagy, D. Bernaerts, and A. Lucas, "Optimization of Catalytic Production and Purification of Buckytubes," J. Mol. Catal. A, 107 159-68 (1996). https://doi.org/10.1016/1381-1169(95)00211-1
  93. W. Zhao, M. J. Lee, H. T. Kim, Y. J. Kim, J. H. Gong, and I. J. Kim, "Formation of Multi-walled Carbon Nanotubes by Catalytic Chemical Vapour Deposition Using Zeolite Encapsulated Nanocrystalline Cobalt Oxides," Asian J. Chem., 23 5457-60 (2011).
  94. A. R. Harutyunyan, "Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production," J. Nanosci. Nanotechnol., 9 2480 (2009). https://doi.org/10.1166/jnn.2009.1297
  95. W. Zhao, H. S. Kim, H. T. Kim, J. H. Gong and I. J. Kim, "Synthesis and Growth of Multi-walled Carbon Nanotubes (MWNTs) by CCVD Using Fe-supported Zeolite Templates," J. Ceram. Proc. Res., 12 ,392-7 (2011).
  96. R. S. Wagner and W. C. Ellis, "Vapor-liquid-solid Mechanism of Single Crystal Growth," Appl. Phys. Lett., 4 89-90 (1964). https://doi.org/10.1063/1.1753975
  97. M. Kumar and Y. Ando, "Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production," J. Nanosci. Nanotechnol., 10 3739-58 (2010). https://doi.org/10.1166/jnn.2010.2939
  98. R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, "Nuleation and Growth of Carbon Deposits from the Nickel Catalyzed Decomposition of Acetylene," J. Catalysis, 26 51-62 (1972). https://doi.org/10.1016/0021-9517(72)90032-2
  99. R. T. K. Baker and R. J. Waite, "Formation of Carbonaceous Deposits from the Platinum-iron Catalyzed Decomposition of Acetylene," J. Catalysis, 37 101-5 (1975). https://doi.org/10.1016/0021-9517(75)90137-2
  100. M. Meyyappan, "Carbon Nanotubes Science and Application," pp: 110-6, CRC Press LLC, 2005.
  101. K. S. Trianatafyllidis, S. A. Karakoulia, D. Gournis, A. Delimitis, L. Nalbandian, E. Maccallini, and P. Rudolf, "Formation of Carbon Nanotubes on Iron/cobalt Oxides Supported on Zeolite-Y: Effect of Zeolite Textural Properties and Particles Morphology," Micropourous and Mesoporous Materials, 110 128-40 (2008). https://doi.org/10.1016/j.micromeso.2007.10.007
  102. M. J. Behr, K. A. Mkhoyan, and E. S. Aydil, "Orientation and Morphological Evolution of Catalyst Nanoparticles during Carbon Nanotube Growth," ACS Nano, 4 5087-94 (2010). https://doi.org/10.1021/nn100944n
  103. W. Zhao, H. S. Kim, D. N. Seo, H. T. Kim, and I. J. Kim, "Assembled Monolayer of Silicalite-1-supported Iron Oxide Nanoparticles for Carbon Nanotube Growth by Catalytic CVD (CCVD)," Asian J. Chem., 24 5249-52 (2012).
  104. T. Hayashi, Y. A. Kim, T. Matoba, M. Esaka, K. Nishimura, T. Tsukada, M. Endo, and M. S. Dresselhaus, "Smallest Freestanding Single-walled Carbon Nanotube," Nano. Lett., 3 887-9 (2003). https://doi.org/10.1021/nl034080r
  105. J. S. Lee, J. H. Kim, Y. J. Lee, N. C. Jeong, and K. B. Yoon, "Manual Assembly of Microcrystal Monolayers on Substrates," Angew. Chem. Int. Ed., 46 3087-90 (2007). https://doi.org/10.1002/anie.200604367
  106. L. D. Shao, G. Tobias, C. G. Salzmann, B. Ballesteros, S. Y. Hong, A. Crossley, B. G. Davis, and M. L. H. Green, "Removal of Amorphous Carbon for the Efficient Sidewall Functionalization of Single-walled Carbon Nanotubes," Chem. Commun., 5090-2 (2007).
  107. A. C. Ferrari and J. Robertson, "Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamondlike Carbon," Phys. Rev. B, 64 075414(1-13) (2001). https://doi.org/10.1103/PhysRevB.64.075414
  108. A. C. Ferrari and J. Robertson, "Origin of the 1150-cm-1 Raman Mode in Nanocrystalline Diamond," Phys. Rev. B, 63 121405(1-4) (2001). https://doi.org/10.1103/PhysRevB.63.121405
  109. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, "Monodisperse $MFe_{2}O_{4}$ (M = Fe, Co, Mn) Nanoparticles," J. Am. Chem. Soc., 126 ,273-9 (2004). https://doi.org/10.1021/ja0380852

Cited by

  1. Particle Stabilized Wet Foam to Prepare SiO2-SiC Porous Ceramics by Colloidal Processing vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.455
  2. Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications vol.6, pp.1, 2016, https://doi.org/10.1038/srep36583
  3. Carbon nanotube-zeolite composite catalyst - characterization and application vol.42, pp.5, 2013, https://doi.org/10.1080/01932691.2019.1708381