DOI QR코드

DOI QR Code

Deposition of β-SiC by a LPCVD Method and the Effect of the Crystallographic Orientation on Mechanical Properties

저압 화학기상증착법을 이용한 β-SiC의 증착 및 결정 성장 방위에 따른 기계적 특성 변화

  • Kim, Daejong (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Lee, Jongmin (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Kim, Weon-Ju (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Yoon, Soon Gil (Department of Materials Engineering, College of Engineering, Chungnam National University) ;
  • Park, Ji Yeon (Nuclear Materials Division, Korea Atomic Energy Research Institute)
  • 김대종 (한국원자력연구원 원자력재료개발부) ;
  • 이종민 (한국원자력연구원 원자력재료개발부) ;
  • 김원주 (한국원자력연구원 원자력재료개발부) ;
  • 윤순길 (충남대학교 재료공학과) ;
  • 박지연 (한국원자력연구원 원자력재료개발부)
  • Received : 2012.12.05
  • Accepted : 2013.01.21
  • Published : 2013.01.31

Abstract

${\beta}$-SiC was deposited onto a graphite substrate by a LPCVD method and the effect of the crystallographic orientation on mechanical properties of the deposited SiC was investigated. The deposition was performed at $1300^{\circ}C$ in a cylindrical hot-wall LPCVD system by varying the deposition pressure and total flow rate. The texture and crystallographic orientation of the SiC were evaluated by XRD. The deposition rate increased linearly with the gas flow rate from 800 sccm to 1600 sccm. It also increased with the pressure but became saturated above a total pressure of 3.3 kPa. In the range of 3.3 - 10 kPa, the preferred orientation changed from the (220) and (311) planes to the (111) plane. The hardness and elastic modulus showed maximum values when the SiC had the (111) preferred orientation, though it gradually decreased upon a change to the (220) and (311) preferred orientations.

Keywords

References

  1. Y. Katoh, L.L. Snead, T.D. Burchell, and W.E. Windes, Composite Technology Development Plan; Vol. 1, pp. 20-31, ORNL/TM-2009/185, ORNL, Oak Ridge, 2010.
  2. X.W. Zhou and C.H. Tang, "Current Status and Future Development of Coated Fuel Particles for High Temperature Gas-Cooled Reactors," Prog. Nucl. Energ., 53 182-88 (2011). https://doi.org/10.1016/j.pnucene.2010.10.003
  3. Y. Katoh, T. Nozawa, and L.L. Snead, "Mechanical Properties of Thin Pyrolytic Carbon Interphase SiC-Matrix Composites Reinforced with Near-Stoichiometric SiC Fibers," J. Am. Ceram. Soc., 88 [11] 3088-95 (2005). https://doi.org/10.1111/j.1551-2916.2005.00546.x
  4. T. Chuto, F. Nagase, and T. Fuketa, "High Temperature Oxidation of Nb-Containing Zr Alloy Cladding in LOCA Conditions," Nucl. Eng. Technol., 41 [2] 163-70 (2009). https://doi.org/10.5516/NET.2009.41.2.163
  5. H. Feinroth, M. Ales, E. Barringer, G. Kohse, D. Carpenter, and R. Jaramillo, "Mechanical Strength of CTP Triplex SiC Fuel Clad Tubes after Irradiation in MIT Research Reactor under PWR Coolant Conditions"; pp. 47-58, in Silicon Carbide and Carbon Composites, Vol. 30, Ceramic Engineering and Science Proceeding, Ed. by Y. Katoh and A. Cozzi, John Wiley & Sons, New Jersey, 2009.
  6. S. Somiya and Y. Inomata, Silicon Carbide Ceramics; Vol. 1, pp. 77-98, Elsevier Science Publishers, New York, 1991.
  7. J. H. Kim, H. K. Lee, J.-Y. Park, W.-J. Kim, and D.K. Kim, "Mechanical Properties of Chemical-Vapor-Deposited Silicon Carbide using a Nanoindentation Technique," J. Kor. Ceram. Soc., 45 [9] 518-23 (2008). https://doi.org/10.4191/KCERS.2008.45.9.518
  8. D. Lespiaux, F. Langlais, and R. Naslain, "Correlations between Gas Phase Supersaturation, Nucleation Process and Physico-Chemical Characteristics of Silicon Carbide Deposited from Si-C-H-Cl System on Silica Substrates," J. Mater. Sci., 30 1500-10 (1990).
  9. J. Chin, P. K. Gantzel, and R. G. Hudson, "The Structure of Chemical Vapor Deposited Silicon Carbide," Thin Solid Films, 40 57-72 (1977). https://doi.org/10.1016/0040-6090(77)90103-1
  10. F. Langlais and C. Prebende, "Physical and Chemical Kinetic Processes in the CVD of Silicon from $SiH_{2}Cl_{2}/H_{2}$ Gaseous Mixtures in a Vertical Cylindrical Hot-Wall Reactor," J. Crystal Growth, 113 606-32 (1991). https://doi.org/10.1016/0022-0248(91)90097-O
  11. F. Loumagne, F. Langlais, and R. Naslain, "Experimental Kinetic Study of the Chemical Vapor Deposition of SiCBased Ceramics from $CH_{3}SiCl_{3}/H_{2} $ Gas Precursor," J. Crystal Growth, 155 198-204 (1995). https://doi.org/10.1016/0022-0248(95)00180-8
  12. J.-S. Song, Y.-W. Kim, D.-J. Kim, D.-J. Choi, and J.-G. Lee, "Low Pressure Chemical Vapor Deposition of Silicon Carbide( in Korean)," J. Kor. Ceram, Soc., 31 [3] 257-64 (1994).
  13. D.-J. Kim, D.-J. Choi, and Y.-W. Kim, "Effect of Reactant Depletion on the Microstructure and Preferred Orientation of Polycrystalline SiC Films by Chemical Vapor Deposition," Thin Solid Films, 266 192-97 (1995). https://doi.org/10.1016/0040-6090(96)80023-X
  14. Y. long, A. Javed, Z. Chen, X. Xiong, and P. Xiao, "Deposition Rate, Texture, and Mechanical Properties of SiC Coatings Produced by Chemical Vapor Deposition at Different Temperatures," Int. J. Appl. Ceram. Technol., in press, 1-9 (2012).
  15. H. K. Lee, J. H. Kim, and D. K. Kim, "Mechanical Properties of Chemical Vapor Deposited SiC Coating Layer(in Korean)," J. Kor. Ceram. Soc., 43 [8] 492-97 (2006). https://doi.org/10.4191/KCERS.2006.43.8.492
  16. M. Ganz, N. Dorval, M. Lefebvre, M. Pealat, F. Loumagne, and F. Langlais, "In Situ Optical Analysis of the Gas Phase during the Deposition of Silicon Carbide from Methyltrichlorosilane," J. Electrochem. Soc., 143 [5] 1654-61 (1996). https://doi.org/10.1149/1.1836694
  17. M.Y. Lee, J.Y. Park, W.-J. Kim, J.I. Kim, G.W. Hong, and S.G. Yoon, "Effect of Total Reaction Pressure on the Microstructure of the SiC deposited Layers by Low Pressure Chemical Vapor Deposition(in Korean)," J. Kor. Ceram. Soc., 38 [4] 388-92 (2001).
  18. D. J. Cheng, W. J. Shyy, D. H. Kuo, and M. H. Hon, "Growth Characteristics of CVD Beta-Silicon Carbide," J. Electrochem. Soc., 134 [12] 3145-49 (1987). https://doi.org/10.1149/1.2100359
  19. J. H. Oh, C. H. Wang, D. J. Choi, and H. S. Song, "Fabrication of CVD SiC Double Layer Structure from the Microstructural Change through Input Gas Ratio(in Korean)," J. Kor, Ceram, Soc., 36 [9] 937-45 (1999).
  20. C.S. Barret, Structure of Metals; Vol. 2, pp. 170-195, McGrow-Hill, New York, 1952.
  21. D.-J. Kim and D.-J. Choi, "Microhardness and Surface Roughness of Silicon Carbide by Chemical Vapour Deposition," J. Mater. Sci. Lett., 16 286-89 (1997). https://doi.org/10.1023/A:1018549001328
  22. K. Niihara, "Mechanical Properties of Chemically Vapor Deposited Nonoxide Ceramics," Am. Ceram. Soc. Bull., 63 [9] 1160-64 (1984).

Cited by

  1. /SiC Composite Tubes vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.359
  2. 메틸트리클로로실란을 이용한 화학증착 탄화규소의 증착율 및 굽힘강도 특성에 미치는 온도의 영향 vol.31, pp.2, 2013, https://doi.org/10.7234/composres.2018.31.2.043