DOI QR코드

DOI QR Code

Study on the K-scale reflecting the confidence of survey responses

설문 응답에 대한 신뢰도를 반영한 K-척도에 관한 연구

  • Received : 2012.11.12
  • Accepted : 2012.12.24
  • Published : 2013.01.31

Abstract

In the Information age, internet addiction has been a big issue in a modern society. The adverse effects of the internet addiction have been increasing at an exponential speed. Along with a great variety of internet-connected device supplies, K-scale diagnostic criteria have been used for the internet addiction self-diagnose tests in the high-speed wireless Internet service, netbooks, and smart phones, etc. The K-scale diagnostic criteria needed to be changed to meet the changing times, and the diagnostic criteria of K-scale was changed in March, 2012. In this paper, we analyze the internet addiction and K-scale features on the actual condition of Gyeongbuk collegiate areas using the revised K-scale diagnostic criteria in 2012. The diagnostic method on internet addiction is measured by the respondents' subjective estimation. Willful error of the respondents can be occurred to hide their truth. In this paper, we add the survey response to the trusted reliability values to reduce response errors on the K-scale on the K-scale, and enhance the reliability of the analysis.

정보화시대에 인터넷 중독의 심각성은 정보화 사회의 큰 이슈로 부각되고 있다. 인터넷사용이 급증함에 따라 정보화의 역기능도 증가하고 있어 인터넷 중독은 사회적문제로 대두되고 있다. 초고속 무선인터넷 서비스 보급 및 넷북, 스마트 폰 등의 인터넷 접속기기가 더욱 다양화됨에 따라 인터넷 중독 자가진단 검사 척도인 K-척도의 진단기준도 시대변화에 따라 변화가 요구되었으며 2012년 3월에 K-척도의 진단기준이 변경되었다. 본 논문에서는 2012년 변경된 K-척도의 기준으로 경북지역 대학생들의 인터넷 중독 실태와 K-척도 특징들을 살펴보고자 한다. K-척도에서 중독 진단을 위한 조사방식은 응답자가 직접 자신의 중독증상을 주관적 판단에 의해 응답하는 설문방식이므로 응답자의 고의적인 사실 숨김으로 인해 응답오차가 발생할 수 있다. 본 논문에서는 응답오차를 줄이기 위해 변경된 K-척도에 응답자에게 설문 응답에 대한 신뢰할 수 있는 신뢰도 값을 추가적으로 입력하여 분석의 신뢰도를 높이고자 한다.

Keywords

References

  1. Choi, H. S. and Ha, J. (2011). A study on the factors inducing internet addiction of college students. Journal of the Korean Data & Information Science Society, 22, 437-448.
  2. Gjorgii, M., Dejan, G. and Ivan, C. (2009). A multi-class svm classifier utilizing binary detection tree. Informetica, 33, 233-241.
  3. Hwang, C. (2011). Asymmetric least squares regression estimation using weighted least squares support vector machine. Journal of the Korean Data & Information Science Society, 22, 999-1005.
  4. Hwang, C. (2010). Variable selection for multiclassification by LS-SVM. Journal of the Korean Data & Information Science Society, 21, 959-965.
  5. Jung, Y. T., Oh, J. A. and Lee, Y. J. (2012). The study on factors affecting committing behavior school violence according to the degree of internet addiction. Journal of Digital Policy, 10, 77-86.
  6. Kim, J. W. and Kim, H. J. (2011). Factor analysis for improving adults internet addiction diagnosis. International Journal of Fuzzy Logic and Intelligent systems, 15, 317-322.
  7. Kim, H. J. and Kim, J. W. (2012). Comparative study of K-scale and the internet addiction diagnosis method using tolerance degree for internet use. Korea Association of Computer Education, 15, 47-55.
  8. Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear programming. In Proceedings of 2nd Berkeley Symposium, Berkeley, University of California Press, 481-492.
  9. Lee, J. and Lee, D. (2005). An improved cluster labeling method for support vector clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 461-464. https://doi.org/10.1109/TPAMI.2005.47
  10. Mercer, J. (1909). Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society A, 415-446.
  11. Scholkopf, B., Platt, J., Shawe-Taylor, J., Smola, A. J. and Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13, 1443-1472. https://doi.org/10.1162/089976601750264965
  12. Shim, J. and Hwang, C. (2011). Forecasting volatility via conditional autoregressive value at risk model based on support vector quantile regression. Journal of the Korean Data & Information Science Society, 22, 589-596.
  13. Suykens, J. A. K. (2000). Least squares support vector machine for classification and nonlinear modeling. Neural Network World, Special Issue on PASE 2000, 10, 29-48.
  14. Suykens, J. A. K. and Vanderwalle, J. (1999). Least square support vector machine classifier. Neural Processing Letters, 9, 293-300. https://doi.org/10.1023/A:1018628609742
  15. Suykens, J. A. K. and Vanderwalle, J. and De Moor, B. (2001). Optimal control by least squares support vector machines. Neural Networks, 14, 23-35. https://doi.org/10.1016/S0893-6080(00)00077-0
  16. Tax, D. M. J. and Duin, R. P. W. (1999). Support vector domain description. Pattern recognition Letters, 20, 1191-1199. https://doi.org/10.1016/S0167-8655(99)00087-2
  17. Vapnik, V. (1995). The nature of statistical learning theory, Springer-Verlag, New York.
  18. Vapnik, V. (1998). Statistical learning theory, Springer, New York.
  19. Yang, J., Estivill-Castro, V. and Chalup, S. K. (2002). Support vector clustering through proximity graph modelling. Proceedings of the 9th International Conference. Neural Information Processing, 2, 898-903. https://doi.org/10.1109/ICONIP.2002.1198191

Cited by

  1. Feature analysis of deaf students' English language by frequency vol.25, pp.4, 2014, https://doi.org/10.7465/jkdi.2014.25.4.819
  2. Analysis of error source in subjective evaluation results on Taekwondo Poomsae: Application of generalizability theory vol.27, pp.2, 2016, https://doi.org/10.7465/jkdi.2016.27.2.395
  3. A case study on verification of internet survey vol.25, pp.1, 2014, https://doi.org/10.7465/jkdi.2014.25.1.11