DOI QR코드

DOI QR Code

Synthesis of Vertically Aligned CuO Nanorods by Thermal Oxidation

열산화법을 이용한 산화구리 나노선 수직성장

  • Kim, Jimin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Jung, Hyuck (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Dojin (Department of Materials Science and Engineering, Chungnam National University)
  • 김지민 (충남대학교 공과대학 신소재공학과) ;
  • 정혁 (충남대학교 공과대학 신소재공학과) ;
  • 김도진 (충남대학교 공과대학 신소재공학과)
  • Received : 2012.10.02
  • Accepted : 2012.11.05
  • Published : 2013.01.27

Abstract

A simple thermal oxidation of Cu thin films deposited on planar substrates established a growth of vertically aligned copper oxide (CuO) nanorods. DC sputter-deposited Cu thin films with various thicknesses were oxidized in environments of various oxygen partial pressures to control the kinetics of oxidation. This is a method to synthesize vertically aligned CuO nanorods in a relatively shorter time and at a lower cost than those of other methods such as the popular hydrothermal synthesis. Also, this is a method that does not require a catalyst to synthesize CuO nanorods. The grown CuO nanorods had diameters of ~100 nm and lengths of $1{\sim}25{\mu}m$. We examined the morphology of the synthesized CuO nanorods as a function of the thickness of the Cu films, the gas environment, the oxidation time, the oxidation temperature, the oxygen gas flow rate, etc. The parameters all influence the kinetics of the oxidation, and consequently, the volume expansion in the films. Patterned growth was also carried out to confirm the hypothesis of the CuO nanorod protrusion and growth mechanism. It was found that the compressive stress built up in the Cu film while oxygen molecules incorporated into the film drove CuO nanorods out of the film.

Keywords

References

  1. B. Ji and H. Gao, J. Mech. Phys. Solids, 52(9), 1963 (2004). https://doi.org/10.1016/j.jmps.2004.03.006
  2. J. Jersch and K. Dickmann, Appl. Phys. Lett., 68(6), 868 (1996). https://doi.org/10.1063/1.116527
  3. Y. S. Kim, I. S. Hwang, S. J. Kim, C. Y. Lee and J. H. Lee, Sens. Actuators, B, 135(1), 298 (2008). https://doi.org/10.1016/j.snb.2008.08.026
  4. L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li and T. Yu, Nanotechnology, 20(8), 085203 (2009). https://doi.org/10.1088/0957-4484/20/8/085203
  5. J. Chen, K. Wang, L. Hartman and W. Zhou, J. Phys. Chem. C, 112(41), 16017 (2008). https://doi.org/10.1021/jp805919t
  6. N. D. Hoa, N. V. Quy, H. Jung, D. Kim, H. Kim and S. K. Hong, Sens. Actuators, B, 146(1), 266 (2010). https://doi.org/10.1016/j.snb.2010.02.058
  7. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, Appl. Phys. Lett., 84(18), 3654 (2004). https://doi.org/10.1063/1.1738932
  8. A. Kolmakov, Y. Zhang, G. Cheng and M. Moskovits, Adv. Mater., 15(12), 997 (2003). https://doi.org/10.1002/adma.200304889
  9. C. Y. Lu, S. P. Chang, S. J. Chang, T. J. Hsueh, C. L. Hsu, Y. Z. Chiou and I. C. Chen, IEEE Sens. J., 9(4), 485 (2009). https://doi.org/10.1109/JSEN.2009.2014425
  10. S. Anandan, X. Wen and S. Yang, Mater. Chem. Phys., 93(1), 35 (2005). https://doi.org/10.1016/j.matchemphys.2005.02.002
  11. M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nat. Mater., 4, 455 (2005). https://doi.org/10.1038/nmat1387
  12. J. B. Baxter and E. S. Aydil, Appl. Phys. Lett., 86(5), 053114 (2005). https://doi.org/10.1063/1.1861510
  13. X. Wang and C. S. Ozkan, Nano Lett., 8(2), 398 (2008). https://doi.org/10.1021/nl071180e
  14. G. J. Zhang, L. Zhang, M. J. Huang, Z. H. H. Luo, G. K. I. Tay, E. J. A. Lim, T. G. Kang and Y. Chen, Sens. Actuators, B, 146(1), 138 (2010). https://doi.org/10.1016/j.snb.2010.02.021
  15. Z. Fang and S. O. Kelley, Anal. Chem., 81(2), 612 (2009). https://doi.org/10.1021/ac801890f
  16. J. I. Hahm and C. M. Lieber, Nano Lett., 4(1), 51 (2004). https://doi.org/10.1021/nl034853b
  17. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4(5), 89 (1964). https://doi.org/10.1063/1.1753975
  18. G. Gu, B. Zheng, W. Q. Han, S. Roth and J. Liu, Nano Lett., 2(8), 849 (2002). https://doi.org/10.1021/nl025618g
  19. S. Feng and R. Xu, Acc. Chem. Res., 34(3), 239 (2001). https://doi.org/10.1021/ar0000105
  20. J. B. Reitz and E. I. Solomon, J. Am. Chem. Soc., 120(44), 11467 (1998). https://doi.org/10.1021/ja981579s
  21. X. Jiang, T. Herricks and Y. Xia, Nano Lett., 2(12), 1333 (2002). https://doi.org/10.1021/nl0257519