DOI QR코드

DOI QR Code

Photoluminescence of Y3(Al, Ga)5O12:Ce3+ Nanoparticles by a Reverse Micelle Process

  • Kim, Min Yeong (School of Nano & Advanced Materials Engineering, Changwon National Univ.) ;
  • Bae, Dong-Sik (School of Nano & Advanced Materials Engineering, Changwon National Univ.)
  • Received : 2012.07.30
  • Accepted : 2012.11.20
  • Published : 2013.01.27

Abstract

Trivalent cerium-ion-doped $Y_3(Al,\;Ga)_5O_{12}$ nanoparticle phosphor nanoparticles were synthesized using the reverse micelle process. The Ce doped $Y_3(Al,\;Ga)_5O_{12}$ particles were obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase and poly(oxyethylene) nonylphenyl ether (Igepal CO-520) as the non-ionic surfactant. The crystallinity, morphology, and thermal properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were characterized by thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and transmission electron microscopy. The crystallinity, morphology, and chemical states of the ions were characterized; the photo-physical properties were studied by taking absorption, excitation, and emission spectra for various concentrations of cerium. The photo physical properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were studied by taking the excitation and emission spectra for various concentrations of cerium. The average particle size of the synthesized YAG powders was below $1{\mu}m$. Excitation spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ samples were 485 nm and 475 nm, respectively. The emission spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ were around 560 nm and 545 nm, respectively. $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ is a red-emitting phosphor; it has a high efficiency for operation under near UV excitation, and may be a promising candidate for photonic applications.

Keywords

References

  1. H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon and S. S. Kim, J. Lumin., 126, 371 (2007). https://doi.org/10.1016/j.jlumin.2006.08.093
  2. K. Y. Jung and H. W. Lee, J. Lumin., 126, 469 (2007). https://doi.org/10.1016/j.jlumin.2006.09.009
  3. S. Zhou, Z. Fu, J. Zhang and S. Zhang, J. Lumin., 118, 179 (2006). https://doi.org/10.1016/j.jlumin.2005.08.011
  4. Y. Zhou, J. Lin, M. Yu, S. Wang and H. Zhang, Mater. Lett., 56, 628 (2002). https://doi.org/10.1016/S0167-577X(02)00567-0
  5. U. Kaufmann, M. Kunzer, K. Kohler, H. Obloh, W. Pletschen, P. Schlotter, J. Wagner, A. Ellens, W. Rossner and M. Kobusch, Phys. Status Solidi A, 192, 246 (2002). https://doi.org/10.1002/1521-396X(200208)192:2<246::AID-PSSA246>3.0.CO;2-I
  6. Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon and J. S. Lee, Appl. Phys.Lett., 89, 231909 (2006). https://doi.org/10.1063/1.2398887
  7. P. Dorenbos, J. Lumin., 99, 283 (2002). https://doi.org/10.1016/S0022-2313(02)00347-2
  8. F. Euler and J. A. Bruce, Acta Crystallogr., 19, 971 (1965). https://doi.org/10.1107/S0365110X65004747
  9. J. L. Wu, G. Gundiah and A. K. Cheetham, Chem. Phys. Lett., 441, 250 (2007). https://doi.org/10.1016/j.cplett.2007.05.023
  10. K. Ohno and T. Abe, J. Electrochem. Soc., 133, 638 (1986). https://doi.org/10.1149/1.2108635
  11. K. Ohno and T. Abe, J. Electrochem. Soc., 134, 2072 (1987). https://doi.org/10.1149/1.2100822
  12. J. G. Li, T. Ikegami, J. H. Lee, T. Mori and Y. Yajima, J. Eur. Ceram. Soc., 20, 2395 (2000). https://doi.org/10.1016/S0955-2219(00)00116-3
  13. M. Yada, M. Ohya, M. Machida and T. Kima, Chem. Commun., 18, 1941 (1998).
  14. M. Veith, S. Mathur, A. Kareiva, M. Jilavi, M. Zimmer and V. Huch, J. Mater. Chem., 9, 3069 (1999). https://doi.org/10.1039/a903664d
  15. P. Vaqueiro and M. A. Lopez-Quintela, J. Mater. Chem., 8, 161 (1998). https://doi.org/10.1039/a705635d
  16. K. T. Pillai, R. V. Kamat, V. N. Vaidya and D. D. Sood, Mater. Chem. Phys., 44, 255 (1996). https://doi.org/10.1016/0254-0584(96)80065-4
  17. N. J. Hess, G. D. Maupin, L. A. Chick, D. S. Sunberg, D. E. McCreedy and T. R. Armstrong, J. Mater. Sci., 29, 1873 (1994). https://doi.org/10.1007/BF00351307
  18. M. Yoshida, M. Lal, N. D. Kumar and P. N. Prasad, J. Mater. Sci., 32, 4047 (1997). https://doi.org/10.1023/A:1018645722633
  19. A. A. Bol and A. Meijerink, J. Phys. Chem. B, 105, 10203 (2001). https://doi.org/10.1021/jp010757s
  20. O. Milosevic, L. Mancic, M. E. Rabanal, J. M. Torralba, B. Yang and P. Townsend, J. Electrochem. Soc., 152, G707 (2005). https://doi.org/10.1149/1.1972319

Cited by

  1. Optical and reliability properties studies of green YAG phosphors by Ga substitution vol.27, pp.4, 2016, https://doi.org/10.1007/s10854-015-4168-8
  2. Effect of Al/Ga substitution on photoluminescence and chromatic properties of Y3Al5−xGaxO12:Ce3+ phosphor vol.27, pp.8, 2016, https://doi.org/10.1007/s10854-016-4806-9