DOI QR코드

DOI QR Code

a-Si:H/c-Si Heterojunction Solar Cell Performances Using 50 ㎛ Thin Wafer Substrate

50 ㎛ 기판을 이용한 a-Si:H/c-Si 이종접합 태양전지 제조 및 특성 분석

  • Song, Jun Yong (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research) ;
  • Choi, Jang Hoon (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research) ;
  • Jeong, Dae Young (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research) ;
  • Song, Hee-Eun (Solar Energy Research Center, Korea Institute of Energy Research) ;
  • Kim, Donghwan (Department of Materials Science of Engineering, Korea University) ;
  • Lee, Jeong Chul (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research)
  • 송준용 (한국에너지기술연구원, KIER-UNIST 차세대전지원천기술센터) ;
  • 최장훈 (한국에너지기술연구원, KIER-UNIST 차세대전지원천기술센터) ;
  • 정대영 (한국에너지기술연구원, KIER-UNIST 차세대전지원천기술센터) ;
  • 송희은 (한국에너지기술연구원, 태양에너지연구단) ;
  • 김동환 (고려대학교, 신소재공학부) ;
  • 이정철 (한국에너지기술연구원, KIER-UNIST 차세대전지원천기술센터)
  • Received : 2012.11.07
  • Accepted : 2012.12.29
  • Published : 2013.01.27

Abstract

In this study, the influence on the surface passivation properties of crystalline silicon according to silicon wafer thickness, and the correlation with a-Si:H/c-Si heterojunction solar cell performances were investigated. The wafers passivated by p(n)-doped a-Si:H layers show poor passivation properties because of the doping elements, such as boron(B) and phosphorous(P), which result in a low minority carrier lifetime (MCLT). A decrease in open circuit voltage ($V_{oc}$) was observed when the wafer thickness was thinned from $170{\mu}m$ to $50{\mu}m$. On the other hand, wafers incorporating intrinsic (i) a-Si:H as a passivation layer showed high quality passivation of a-Si:H/c-Si. The implied $V_{oc}$ of the ITO/p a-Si:H/i a-Si:H/n c-Si wafer/i a-Si:H/n a-Si:H/ITO stacked layers was 0.715 V for $50{\mu}m$ c-Si substrate, and 0.704 V for $170{\mu}m$ c-Si. The $V_{oc}$ in the heterojunction solar cells increased with decreases in the substrate thickness. The high quality passivation property on the c-Si led to an increasing of $V_{oc}$ in the thinner wafer. Short circuit current decreased as the substrate became thinner because of the low optical absorption for long wavelength light. In this paper, we show that high quality passivation of c-Si plays a role in heterojunction solar cells and is important in the development of thinner wafer technology.

Keywords

References

  1. L. Frantzis, E. Jones, C. Lee, M. Wood and P. Wormser, in proceedings of the 16th European Photovoltaic Solar Energy conference (Glasgow, UK, 2000) p. 2100.
  2. D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman and T. Buonassisi, Energ. Environ. Sci., 5, 5874 (2012). https://doi.org/10.1039/c2ee03489a
  3. C. J. J. Tool, A. R. Burgers, P. Manshanden, A. W. Weeber and B. H. M. van Straaten, Prog. Photovoltaics, 10(4), 279 (2002). https://doi.org/10.1002/pip.421
  4. A. Wang, J. Zhao, S. R. Wenham and M. A. Green, Prog. Photovoltaics, 4(1), 55 (1996). https://doi.org/10.1002/(SICI)1099-159X(199601/02)4:1<55::AID-PIP111>3.0.CO;2-P
  5. G. P. Willeke, Sol. Energy Mater. Sol. Cells, 72, 191 (2002). https://doi.org/10.1016/S0927-0248(01)00164-7
  6. S. Kim, S. Sridharan, C. Khadilkar and A. Shaikh, in proceedings of 31th IEEE Photovoltaic Specialists Conference (Orlando, USA, Jan 2005) p. 1100.
  7. A. Schneider, C. Gerhards, P. Fath, E. Bucher, R. J. S. Young, J. A. Raby, A. F. Carroll, in Proceedings of 29th IEEE Photovoltaic Specialists Conference (New Orleans, USA, May 2002) p. 336.
  8. M. M. Hilali, J. M. Gee and P. Hacke, Sol. Energy Mater. Sol. Cells, 91(13), 1228 (2007). https://doi.org/10.1016/j.solmat.2007.04.010
  9. M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa and Y. Kuwano, Jpn. J. Appl. Phys., 31, 3518 (1992). https://doi.org/10.1143/JJAP.31.3518
  10. M. Tanaka, S. Okamoto, S. Tsuge and S. Kiyawa, in proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 1, 955 (2003).
  11. Y. Matsumoto, G. Hirata, H. Takakura, H. Okamoto and Y. Hamakawa, J. Appl. Phys., 67, 6538 (1990). https://doi.org/10.1063/1.345131
  12. D. Munoz, P. Carreras, J. Escarre, D. Ibarz, S. M. de Nicolas, C. Voz, J. M. Asensi and J. Bertomeu, Thin Solid Films, 517(12), 3578 (2009). https://doi.org/10.1016/j.tsf.2009.01.024
  13. E. Maruyama, A. Terakawa, M. Taguchi, Y. Yoshimine, D. Ide, T. Baba, M. Shima, H. Sakata and M. Tanaka, in proceedings of 4th World Conference on Photovoltaic Energy Conversion, 2, 1455 (2006).
  14. T. Mishima, M. Taguchi, H. Sakata and E. Maruyama, Sol. Energy Mater. Sol. Cells., 95(1), 18 (2011). https://doi.org/10.1016/j.solmat.2010.04.030
  15. S. Tohoda, D. Fujishima, A. Yano, A. Ogane, K. Matsuyama, Y. Nakamura, N. Tokuoka, H. Kanno, T. Kinoshita, H. Sakata, M. Taguchi and E. Maruyama, J. Non-Cryst. Solids., 358(17), 2219 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.03.025
  16. H. Inoue, Y. Tsunomura, D. Fujishima, A. Yano, S. Taira, Y. Ishikawa, T. Nishiwaki, T. Nakashima, T. Asaumi, M. Taguchi, H. Sakata and E. Maruyama, in proceeding of MRS Fall Meeting, 1210, 1210-Q07-01 (2009).
  17. M. A. Green, Solarcells: Operating Principles, Technology and System Applications, p. 81-82, University of New South Wales, Kensington, UK (1998).
  18. K. Maki, D. Fujishima, H. Inoue, Y. Tsunomura, T. Asaumi, S. Taira, T. Kinoshita, M. Taguchi, H. Sakata, H. Kanno and E. Maruyama, in proceedings of 37th IEEE Photovoltaic Specialists Conference (Seattle, USA, June 2011) p. 57.
  19. J. Y. Song, D. Y. Jeong, C. S. Kim, S. H. Park, J. S. Cho, J. Song, J. S. Wang and J. C. Lee, Kor. J. Mater. Res., 20(4), 210 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.4.210
  20. R. A. Sinton and A. Cuevas, Appl. Phys. Lett., 69(17), 2510 (1996). https://doi.org/10.1063/1.117723
  21. I. Martin, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas and R. Alcubilla, Appl. Phys. Lett., 79, 2199 (2001). https://doi.org/10.1063/1.1404406
  22. S. Bowden and R. A. Sinton, J. Appl. Phys., 102, 124501 (2007). https://doi.org/10.1063/1.2818371
  23. K. -S. Ji, J. Choi, W. -S. Choi, H. -M. Lee and D. Kim, in proceedings of 37th IEEE Photovoltaic Specialists Conference (Honolulu, USA, June 2010) p. 3190.
  24. K. Pierz, W. Fuhs and H. Mell, J. Non-Cryst. Solids., 114, 651 (1989). https://doi.org/10.1016/0022-3093(89)90679-0
  25. S. De Wolf and M. Kondo, Appl. Phys. Lett., 91, 112109 (2007). https://doi.org/10.1063/1.2783972
  26. M. J. Kerr and A. Cuevas, Semicond. Sci. Technol., 17, 35 (2002). https://doi.org/10.1088/0268-1242/17/1/306
  27. V. Verlaan, C. H. M. van der Werf, Z. S. Houweling, I. G. Romijn, A. W. Weeber, H. F. W. Dekkers, H. D. Goldbach and R. E. I. Schropp, Prog. Photovoltaics, 15, 563 (2007). https://doi.org/10.1002/pip.760
  28. J. W. A. Schuttauf, K. H. M. van der Werf, I. M. Kielen, W. G. J. H. M. van Sark, J. K. Rath and R. E. I. Schropp, Appl. Phys. Lett., 98, 153514 (2011). https://doi.org/10.1063/1.3579540
  29. S. De Wolf, S. Olibet and C. Ballif, Appl. Phys. Lett., 93, 032101 (2008). https://doi.org/10.1063/1.2956668
  30. D. Hinken, K. Bothe, K. Ramspeck, S. Herlufsen and R. Brendel, in proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, Germany, September 2009) p. 1082.
  31. X. Ma, Z. Liu, H. Liao, J. Li, in proceedings of Power and Energy Engineering Conference (APPEEC, Chengdu, March 2010) p. 1.