DOI QR코드

DOI QR Code

Graphene Formation on Ni/SiO2/Si Substrate Using Carbon Atoms Activated by Inductively-Coupled Plasma Chemical Vapor Deposition

유도결합 플라즈마 화학기상증착법에 의해 활성화된 탄소원자를 이용한 Ni/SiO2/Si 기판에서 그래핀 성장

  • Nang, Lam Van (Department of Materials Science & Engineering, Chungnam National University) ;
  • Kim, Eui-Tae (Department of Materials Science & Engineering, Chungnam National University)
  • 람반낭 (충남대학교 공과대학 재료공학과) ;
  • 김의태 (충남대학교 공과대학 재료공학과)
  • Received : 2012.11.14
  • Accepted : 2012.12.04
  • Published : 2013.01.27

Abstract

Graphene has been synthesized on 100- and 300-nm-thick Ni/$SiO_2$/Si substrates with $CH_4$ gas (1 SCCM) diluted in mixed gases of 10% $H_2$ and 90% Ar (99 SCCM) at $900^{\circ}C$ by using inductively-coupled plasma chemical vapor deposition (ICP-CVD). The film morphology of 100-nm-thick Ni changed to islands on $SiO_2$/Si substrate after heat treatment at $900^{\circ}C$ for 2 min because of grain growth, whereas 300-nm-thick Ni still maintained a film morphology. Interestingly, suspended graphene was formed among Ni islands on 100-nm-thick Ni/$SiO_2$/Si substrate for the very short growth of 1 sec. In addition, the size of the graphene domains was much larger than that of Ni grains of 300-nm-thick Ni/$SiO_2$/Si substrate. These results suggest that graphene growth is strongly governed by the direct formation of graphene on the Ni surface due to reactive carbon radicals highly activated by ICP, rather than to well-known carbon precipitation from carbon-containing Ni. The D peak intensity of the Raman spectrum of graphene on 300-nm-thick Ni/$SiO_2$/Si was negligible, suggesting that high-quality graphene was formed. The 2D to G peak intensity ratio and the full-width at half maximum of the 2D peak were approximately 2.6 and $47cm^{-1}$, respectively. The several-layer graphene showed a low sheet resistance value of $718{\Omega}/sq$ and a high light transmittance of 87% at 550 nm.

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  2. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A., 102, 10451 (2005). https://doi.org/10.1073/pnas.0502848102
  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature, 438, 197 (2005). https://doi.org/10.1038/nature04233
  4. Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Nature, 438, 201 (2005). https://doi.org/10.1038/nature04235
  5. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong., Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719
  6. S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon and R. C. Haddon, J. Am. Chem. Soc., 128, 7720 (2006). https://doi.org/10.1021/ja060680r
  7. C. G. Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard and K. Kern, Nano Lett., 7, 3499 (2007). https://doi.org/10.1021/nl072090c
  8. G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First and J. A. Stroscio, Science, 317, 219 (2007). https://doi.org/10.1126/science.1142882
  9. C. Faugeras, A. Nerriere, M. Potemski, A. Mahmood, E. Dujardin, C. Berger and W. A. D. Heer, Appl. Phys. Lett., 92, 011914 (2008). https://doi.org/10.1063/1.2828975
  10. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett., 9, 30 (2009). https://doi.org/10.1021/nl801827v
  11. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science, 324, 1312 (2009). https://doi.org/10.1126/science.1171245
  12. X. Li, W. Cai, L. Colombo and R. S. Ruoff, Nano Lett., 9, 4268 (2009). https://doi.org/10.1021/nl902515k
  13. Y. S. Park, H. H. Huh and E. T. Kim, Kor. J. Mater. Res., 19, 522 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.10.522
  14. L. V. Nang and E. T. Kim, J. Electrochem. Soc., 159, K93 (2012). https://doi.org/10.1149/2.082204jes
  15. A. Dato, V. Radmilovic, Z. Lee, J. Phillips and M. Frenklach, Nano Lett., 8, 2012 (2008). https://doi.org/10.1021/nl8011566
  16. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett., 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401

Cited by

  1. Inductively-Coupled Plasma Chemical Vapor Growth Characteristics of Graphene Depending on Various Metal Substrates vol.24, pp.12, 2014, https://doi.org/10.3740/MRSK.2014.24.12.694