DOI QR코드

DOI QR Code

Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction

차량 경량화를 위한 사출성형 유리섬유강화플라스틱의 온도 및 수분 흡수에 따른 기계적 물성 변화

  • Chun, Doo-Man (School of Mechanical Engineering, Univ. of Ulsan) ;
  • Ahn, Sung-Hoon (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • Received : 2012.06.25
  • Accepted : 2012.11.08
  • Published : 2013.02.04

Abstract

Owing to the global energy crisis, studies have strongly focused on realizing energy savings through vehicle weight reduction using light metal alloys or polymer composites. Polymer composites afford many advantages including enabling the fabrication of complex shapes by injection molding, and glass and carbon fibers offer improved mechanical properties. However, the high temperature in an engine room and the high humidity during the rainy season can degrade the mechanical properties of the polymer. In this study, the mechanical properties of injection-molded glass-fiber-reinforced polymer were assessed at a temperature of $85^{\circ}C$ and the maximum moisture absorption conditions. The result showed a 23% reduction in the maximum tensile strength under high temperature, 30% reduction under maximum moisture absorption, and 70% reduction under both heat and moisture conditions. For material selection during the design process, the effects of high temperature and high humidity should be considered.

최근 차량 경량화를 통한 에너지 절감을 위해서 무거운 철강재료를 경금속이나 복합재료로 대체하는 연구가 많이 진행되고 있다. 이중, 폴리머 기반의 복합재료는 사출성형을 통해서 복잡한 형상의 제작이 가능하고, 유리섬유나 탄소섬유를 함께 사용하여 철강재료 수준으로 기계적 물성을 높일 수 있는 장점이 있다. 하지만 엔진의 고온과 우기에서의 높은 습도 환경은 폴리머의 기계적 물성을 낮추기 때문에 재료선택 과정에서 반드시 고려해야 한다. 본 연구에서는 사출성형을 통해 만들어진 유리섬유강화플라스틱을 엔진룸 내부 온도와 유사한 $85^{\circ}C$ 환경과 우기시의 최대 수분흡수 환경하에서의 기계적 물성변화를 인장시험을 통해 알아보았다. 그 결과, 고온환경에서 최대인장강도가 약 23% 감소를 보였고, 수분에 의해서는 약 30% 감소하였으며, 고온과 수분 모두에 대해서는 약 70% 감소를 확인하였으며 이는 재료 선정시 반드시 고려해야 할 영향으로 판단되었다.

Keywords

References

  1. Cole, G. S. and Sherman, A. M., 1995, "Light Weight Materials for Automotive Applications," Materials Characterization, Vol.35, No. 1, pp. 3-9. https://doi.org/10.1016/1044-5803(95)00063-1
  2. Mustafa, K. K., 2008, "Magnesium and its alloys Applications in Automotive Industry," The International Journal of Advanced Manufacturing Technology, Vol. 39, No. 9-10, pp., 851-865. https://doi.org/10.1007/s00170-007-1279-2
  3. Shanmughasundaram, P. and Subramanian, R., 2011, "Aluminium - Fly Ash Composites as Light Weight," Materials for Automotive Industry, Paper Number: 2011-28-0009.
  4. Friedrich, K. and Almajid, A. A., 2012, "Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications," Applied Composite Materials, (in print) DOI: 10.1007/s10443- 012-9258-7.
  5. Goede, M., Stehlin, M., Rafflenbeul, L., Kopp, G. and Beeh, E., 2009, "Super Light Car—lightweight Construction Thanks to a Multi-Material Design and Function Integration," European Transport Research Review, Vol. 1, No. 1, pp. 5-10. https://doi.org/10.1007/s12544-008-0001-2
  6. Jeon, K. W., Shin, K. B. and Kim, J. S., 2011, "An Evaluation of Fatigue Life and Strength of Lightweight Bogie Frame Made of Laminate Composites," Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 8, pp. 913-920. https://doi.org/10.3795/KSME-A.2011.35.8.913
  7. Ko, H. Y., Shin, K. B. and Kim, J. S., 2010, "A Study on Improving the Fatigue Life for a Woven Glass Fabric/Epoxy Laminate Composite Applied to Railway Vehicles," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 2, pp. 203-209.
  8. Oka, H., Tabuchi, Y. and Yazawa, H., 2002, "Development of Plastic Pulley for Automotive Air Conditioner Compressor," SAE Technical Paper 2002- 01-0603.
  9. Tho, Y. C., Lim, T. W., Kim, N. H., Chung, W. and Kim, G. P., 1998, "Developing the Thermoplastic Water Pump and Power Steering Pulley for a Passenger Car," SAE Technical Paper 980736.
  10. Maggana, C. and Pissis, P., 1999, "Water sorption and diffusion studies in an epoxy resin system," Journal of Polymer Science Part B: Polymer Physics, Vol. 37, No. 11, pp. 1165-1182. https://doi.org/10.1002/(SICI)1099-0488(19990601)37:11<1165::AID-POLB11>3.0.CO;2-E
  11. Huang, H. and Talreja, R., 2006, "Numerical Simulation of Matrix Micro-cracking in Short Fiber Reinforced Polymer Composites: Initiation and Propagation," Composites Science and Technology, Vol. 66, No. 1, pp. 2743-2757. https://doi.org/10.1016/j.compscitech.2006.03.013
  12. Tsenoglou, C. J., Pavlidou, S. and Papaspyrides, C. D., "Evaluation of Interfacial Relaxation due to Water Absorption in Fiber-Polymer Composites," Composites Science and Technology, Vol. 66, No. 1, pp. 2855-2864.