DOI QR코드

DOI QR Code

Numerical Study of Hydrogen/Air Combustion in Combustion Chamber of Ultra Micro Gas Turbine by Change of Flow Rate and Equivalence Ratio

공급 유량 및 당량비 변화에 따른 초소형 가스터빈 연소실 내 수소/공기 연소의 수치해석 연구

  • Received : 2012.02.07
  • Accepted : 2012.09.14
  • Published : 2013.02.01

Abstract

In this study, we performed a numerical study of hydrogen/air combustion in the combustion chamber of an ultra micro gas turbine. The supply flow rate and equivalence ratio are used as variables, and the commercial computational fluid dynamic program (STAR-CCM) is used for the numerical study of the combustion. The flow rate significantly affects the flame position, flame temperature, and pressure ratio between the inlet and the outlet. The flame position is close to the outlet in the combustion chamber, and the flame temperature and pressure ratio monotonously increases with the supply flow rate. The change in the equivalence ratio does not affect the flame position. The maximum flame temperature occurs under stoichiometric conditions.

본 연구에서는 초소형 가스터빈 연소기에서의 수소/공기 연소에 대한 수치해석을 연소기 입구에서의 공급 유량 및 유체의 수소/공기 혼합비 변화에 대하여 수행하였다. 수치해석은 상용화 프로그램인 STAR-CCM 을 이용하였다. 유체의 공급 유량의 변화는 연소기 내 화염의 위치와 온도, 입구와 출구의 압력비 등에 상당한 영향을 주었다. 유체의 공급 유량이 증가할 때, 연소기 내의 화염은 점점 출구 방향으로 위치하였고, 화염의 온도 및 입구와 출구의 압력비는 단조적으로 증가하였다. 유체의 수소/공기 혼합비 변화는 화염의 위치에는 큰 영향을 주지 않았고, 이론공연 상태에서 연소실 내에 가장 높은 화염온도를 가졌다.

Keywords

References

  1. Dunn-Rankin, D., Leal, E. M. and Walther, D. C., 2005, "Personal Power Systems," Progress in Energy and Combustion Science, Vol. 31, No. 5-6, pp. 422-465. https://doi.org/10.1016/j.pecs.2005.04.001
  2. Kang, K., Meng, Y. S., Breger, J., Grey, C. P. and Ceder, G., 2006, "Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries," Science, Vol. 311, No. 5763, pp. 977-980. https://doi.org/10.1126/science.1122152
  3. Kim, D. K., Duan, C., Chen, Y. F. and Majumdar, A., 2010, "Power Generation from Concentration Gradient by Reverse Electrodialysis in Ion-Selective Nanochannels," Microfluidics and Nanofluidics, Vol. 9, No. 6, pp. 1215-1224. https://doi.org/10.1007/s10404-010-0641-0
  4. Lueke, J. and Moussa, W. A., 2011, "MEMS-Based Power Generation Techniques for Implantable Biosensing Applications," Sensors, Vol. 11, No. 2, pp. 1433-1460. https://doi.org/10.3390/s110201433
  5. Walther, D. C. and Ahn, J., 2011, "Advances and Challenges in the Development of Power-Generation Systems at Small Scales," Progress in Energy and Combustion Science, Vol. 37, No. 5, pp. 583-610. https://doi.org/10.1016/j.pecs.2010.12.002
  6. Kim, Y. and Logan, B. E., 2011, "Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production," Environmental Science & Technology, Vol. 45, No. 13, pp. 5834-5839. https://doi.org/10.1021/es200979b
  7. Cao, L., Guo, W., Ma, W., Wang, L., Xia, F., Wang, S., Wang, Y., Jiang, L. and Zhu, D., 2011, "Towards Understanding the Nanofluidic Reverse Electrodialysis System: Well Matched Charge Selectivity and Ionic Composition," Energy & Environmental Science, Vol.4, No. 6, pp. 2259-2266. https://doi.org/10.1039/c1ee01088c
  8. Sundarrajan, S., Allakhverdiev, S. I. and Ramakrishna, S., 2012, "Progress and Perspectives in Micro Direct Methanol Fuel Cell," International Journal of Hydrogen Energy, In press.
  9. Ju, Y. and Maruta, K., "Microscale Combustion: Technology Development and Fundamental Research," Progress in Energy and Combustion Science, Vol. 37, No. 2, pp. 669-715.
  10. Mitsos, A. and Barton, P. I., 2009, Microfabricated Power Generation Devices: Design and Technology, Wiley-VCH, New Jersey, pp. 81-96.
  11. Mehra, A., Zhang, X., Ayon, A. A., Waitz, I. A., Schmidt, M. A., Spadaccini, C. M., 2000, "A Six- Wager Combustion System for a Silicon Micro Gas Turbine Engine," Journal of Microelectromechanical Systems, Vol. 9, No. 4, pp. 517-527. https://doi.org/10.1109/84.896774
  12. Epstein A. H., 2003, "Milimeter-Scale, Micro- Electro-Mechanical Systems Gas Turbine Engines," Journal of Engineering for Gas Turbines and Power, Vol. 126, No. 2, pp. 205-226.
  13. Shan, X. C., Wang, Z. F., Jin, Y. F., Wu, M., Hua, J., Wong, C. K. and Maeda, R., 2005, "Studies on a Micro Combustor for Gas Turbine Engines," Journal of Micromechanics and Microengineering, Vol. 15, No. 9, pp. S215-S221. https://doi.org/10.1088/0960-1317/15/9/S07
  14. Iiduka, A., Ishigaki, K., Takikawa, Y., Ohse, T., Saito, K., Uchikoba, F., 2011, "Development of the Electromagnetic Induction Type Micro Air Turbine Generator Using MEMS and Multilayer Ceramic Technology," IOP Conference Series: Materials Science and Engineering, Vol. 18, 0902035.
  15. CD-Adapco, 2008, "Star-CCM+ (v 4.02.007) manual.
  16. Hua, J., Wu, M. and Kumar, K., 2005, "Numerical Simulation of the Combustion of Hydrogen-Air Mixture in Micro-Scaled Chambers Part II: CFD Analysis for a Micro-Combustor," Chemical Engineering Science, Vol. 60, No. 13 pp. 3507-3515. https://doi.org/10.1016/j.ces.2005.01.042

Cited by

  1. Numerical and Experimental Analysis of Micro Gas Turbine Heat Transfer Effect vol.39, pp.2, 2015, https://doi.org/10.3795/KSME-B.2015.39.2.153