DOI QR코드

DOI QR Code

Study of Specific Resistance of Conductive Ink According to Temperature During Laser Sintering Process

전도성 잉크의 레이저 열경화 공정 시 온도에 따른 비저항 연구

  • Received : 2012.05.31
  • Accepted : 2012.11.03
  • Published : 2013.02.01

Abstract

In this study, the two-dimensional transient temperature of printed Ag nanoparticle ink during continuous wave laser sintering was calculated. Ag nanoparticle ink was printed on a glass substrate by inkjet printing. Then, a 532-nm continuous wave laser with different laser intensities was irradiated on the printed Ag nanoparticle ink for 60 s. During laser irradiation, the in-situ specific resistance of the sintered ink was measured. To obtain the transient temperature of the sintered ink during the laser sintering process, a two-dimensional transient heat conduction equation was derived by applying the Wiedemann-Franz law. It was found that the specific resistance of the sintered ink decreased with an increase in the sintering temperature of the printed ink.

본 연구에서는 전도성 잉크의 레이저 열경화 공정시 은 나노입자 잉크의 레이저 열경화 공정 온도를 수치해석하였다. 유리기판 위에 잉크젯 프린팅을 이용하여 인쇄한 은 나노 입자 잉크를 532 nm 파장의 CW 레이저를 각기 다른 세기로 60 초 동안 조사하여 가열하였다. 온도계산을 위해서, 열생성항에 들어가는 반사율을 구하였고, 레이저 조사 중 실시간 은 나노입자 잉크의 비저항을 측정하였다. 온도 계산은 2차원 열전도 방정식에 Wiedemann-Franz law 를 적용하였다. 그 결과, 레이저 조사로 인해 인쇄된 잉크의 온도가 상승할수록 비저항이 떨어지는 결과를 확인하였다.

Keywords

References

  1. Kim, T. Y., Hwang, J. Y. and Moon, S. J., 2010, "Laser Curing of the Silver/Copper Nanoparticle Ink via Optical Property Measurement and Calculation," J.J.A.P., Vol. 49, pp. 05EA09.
  2. Lee, H. H., Chou, K. S. and Huang, K. C., 2005, "Inkjet Printing of Nanosized Silver Colloids," Nanotechnology, Vol. 16, pp. 2436-2441. https://doi.org/10.1088/0957-4484/16/10/074
  3. van Osch, T. H. J., Perelaer, J., De Laat, A. W. M. and Schubert, U. S., 2008, "Inkjet Printing of Narrow Conductive Tracks on Untreated Polymeric Substrates," Adv. Mater., Vol. 20, pp. 343-345. https://doi.org/10.1002/adma.200701876
  4. Lee, H. H., Chou, K. S. and Huang, K. C., 2005, "Inkjet Printing of Nanosized Silver Colloids," Nanotechnology, Vol. 16, pp. 2436-2441. https://doi.org/10.1088/0957-4484/16/10/074
  5. Bieri, N. R., Chung, J., Haferl, S. E., Poulikakos, D. and Grigoropoulos, C.P., 2003, "Microstructuring by Pring and Laser Curing of Nanoparticle Solutions," Appl. Phys, Lett., Vol. 82, pp. 3529-3531. https://doi.org/10.1063/1.1575502
  6. Chiolerio, A., Maccioni, G., Martino, P., Cotto, M., Pandolfi, P., Rivolo, P., Ferrero, S. and Scaltrito, L., 2011, "Inkjet Printing and Low Power Laser Annealing of Silver Nanoparticle Traces for the Realization of Low Resistivity Lines for Flexible Electronics," Microelectronic Eng., Vol. 88, pp. 2481-2483. https://doi.org/10.1016/j.mee.2010.12.099
  7. Modest, M. F., 1993, "Radiative Heat Transfer," McGraw Hill, 1, pp. 61.
  8. Kittle, C., 2007, "Introduction to Solid State Physics," John wiley & Sons, Inc, 8, pp. 156.
  9. Luo, W., Hu, W. and Xiao, S., 2008, "Size Effect on the Thermodynamic Properties of Silver Nanoparticles," J. Phys. Chem. C, Vol. 112, pp. 2359-2369. https://doi.org/10.1021/jp0770155
  10. Yang, C. C. and Li, S., 2007, "Investigation of Cohesive Energy Effects on Size Dependent Physical and Chemical Properties of Nanocrystals," Phys. Rev. B, Vol. 75, p. 165413. https://doi.org/10.1103/PhysRevB.75.165413
  11. Buffat, P. and Borel, J. P., 1976, "Size Effect on the Melting Temperature of Gold Particles," Phys. Rev. A, Vol. 13, p. 2287 https://doi.org/10.1103/PhysRevA.13.2287
  12. Jak, M. J. J., Konstapel, C., Kreuningen, A. C., Verhoeven, J. and Frenken, J. W. M., 2000, "Scanning Tunneling Microscopy Study of the Growth of Small Palladium Particles on $TiO_{2}$(110)," Surf. Sci., Vol. 457, pp. 295-310. https://doi.org/10.1016/S0039-6028(00)00431-3
  13. Datye, A. K., Xu, Q., Kharas, K. C. and Mccarty, J. M., 2006, "Particle Size Distributions in Heterogeneous Catalysts: What do They Tell us About the Sintering Mechanism?," Vol. 111, pp. 59-67. https://doi.org/10.1016/j.cattod.2005.10.013
  14. Zeng, P., Zajac, S., Clapp, P. C. and Rifkin,J. A., 1998, "Nanoparticle Sintering Simulations," Materials Science and Eng., Vol. A252, pp. 301-306.
  15. Perelaer, J., Smith, P. J., Mager, D., Soltman, D., Volkman, S. K., Subramanian, V., Korvink, J. G. and Schubert, U. S., 2010, "Printed Electronics: the Challenge Involved in Printing Devices, Interconnects, and Contacts Based on Inorganic Materials," J. Mater. Chem., Vol. 20, pp. 8446-8453. https://doi.org/10.1039/c0jm00264j