DOI QR코드

DOI QR Code

Effect of the Tapered Angle on the Ultimate Load Factors of PPWS Sockets in Main Cables of Suspension Bridges

현수교 PPWS용 소켓의 내벽 경사각이 소켓의 극한 하중계수에 미치는 영향

  • 유훈 (현대건설(주) 연구개발본부 토목건축연구개발실) ;
  • 이성형 (현대건설(주) 연구개발본부 토목건축연구개발실) ;
  • 서주원 (현대건설(주) 연구개발본부 토목건축연구개발실)
  • Received : 2012.06.13
  • Accepted : 2012.11.06
  • Published : 2013.02.04

Abstract

Ultimate load factors of PPWS(Prefabricated Parallel Wire Strand) sockets in main cables of suspension bridges are studied with respect to the tapered angles of the inner surface of sockets. After briefly reviewing the current design method, 15 numbers of finite element models of sockets are prepared by varying the number of wires in a strand and the tapered angles. The finite element models are updated by comparing experimental and numerical results, so that the models can reflect the real behavior of sockets. The stress distributions at the first yielding and ultimate states are analyzed by performing the incremental load analysis using ABAQUS. It is concluded that the optimized tapered angle of sockets should be determined at the specific angle between the results of verification equations of the required bonding length and stress resistance length.

현수교 PPWS용 소켓의 내벽 경사각에 따른 소켓의 극한 하중계수의 변화를 검토하였다. 소켓의 구조 및 설계법을 간략히 정리하였고, 스트랜드 내의 강선 본수와 소켓 내벽 경사각을 매개변수화 한 15개의 소켓 모델을 설계하여 유한요소 모델을 작성하였다. 작성된 소켓 해석모델이 실제 소켓의 거동을 반영할 수 있도록 실험 결과와 해석 결과를 비교하여 소켓의 유한요소 모델을 개선하였다. 소켓 해석 모델에 대하여 ABAQUS를 이용하여 하중-변위 해석을 수행하였고, 최초 항복 및 극한 상태에서 소켓의 거동을 분석하였다. 해석결과, 최대의 극한 하중계수를 갖는 소켓 내벽 경사각은 스트랜드 내의 강선 본수에 따라 달라짐을 알 수 있었다. 소켓 내벽의 최적 경사각은 현행 소켓 설계식의 필요 부착길이 검토식과 필요 응력저항길이 검토식의 경계가 되는 임계각에서 결정되었다.

Keywords

References

  1. ABAQUS Inc. (2007) ABAQUS 6.7 Analysis user's manual.
  2. Brandon J.E., Chaplin C.R., Ridge I.M.L. (2001) Analysis of a resin socket termination for a wire rope, The Journal of Strain Analysis for Engineering Design, Vol. 36, No. 1, pp. 71-88. https://doi.org/10.1243/0309324011512621
  3. Brandon J.E., Ridge I.M.L. (2003) Comparison of white metal and resin socket terminations for wire ropes, The Journal of Strain Analysis for Engineering Design, Vol. 38, No. 2, pp. 149-160. https://doi.org/10.1243/030932403321163677
  4. Buckland P.G. (2003) Increasing the load capacity of suspension bridges, Journal of Bridge Engineering, ASCE, Vol. 8, No. 5, pp. 288-296. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:5(288)
  5. Hearn E.J. (1997) Mechanics of materials. Butterworth-Heinemann.
  6. Honshu-Shikoku Bridge Authority (1989) HBS 3503 Prefabricated parallel wire strand.
  7. Lee S.W. (2003) Planning and design of suspension bridges. (in Korean)
  8. Japanese Society of Civil Engineers (1996) Technology and trend of suspension bridges. (in Japanese)
  9. Japanese Standard Association (1995) JIS F 3432 Ship's steel wire sockets.
  10. Komura T., Wada K., Takano H., Sakamoto Y. (1990) Study into mechanical properties and design method of large cable sockets, Structural/Earthquake Engineering, JSCE, Vol. 7, No. 2, pp. 251-262.
  11. Korean Agency for Technology and Standards (2001) KS D 4101 Cardon steel castings.
  12. Sun J. (2004) Suspension cable design of the New San Francisco- Oakland Bay Bridge, Journal of Bridge Engineering, ASCE, Vol. 9, No. 1, pp. 101-106. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:1(101)
  13. Waisman H., Montoya A., Betti R., Noyan I.C. (2011) Load transfer and recovery length in parallel wires of suspension bridge cables, Journal of Engineering Mechanics, ASCE, Vol. 137, No. 4, pp. 227-237. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000220
  14. Yoo H., Seo J.W., Lee S.H. (2011) Applicability verification of high-strength parallel wire strands by tensile tests. KSCE Journal of Civil Engineering, Vol. 31, No. 6A, pp. 435-447. (in Korean)

Cited by

  1. Behavior Analysis of PPWS Sockets for Suspension Bridges Considering Frictional Contact vol.33, pp.4, 2013, https://doi.org/10.12652/Ksce.2013.33.4.1281