DOI QR코드

DOI QR Code

Ring-shear Apparatus for Estimating the Mobility of Debris Flow and Its Application

토석류 유동성 평가를 위한 링 전단시험장치 개발 및 활용

  • 정승원 (한국지질자원연구원 지구환경연구본부) ;
  • ;
  • 송영석 (한국지질자원연구원 지구환경연구본부)
  • Received : 2012.09.06
  • Accepted : 2012.12.06
  • Published : 2013.02.04

Abstract

Landslides are known as gravitational mass movements that can carry the flow materials ranging in size from clay to boulders. The various types of landslides are differentiated by rate and depositional features. Indeed, flow characteristics are observed from very slow-moving landslides (e.g., mud slide and mud flow) to very fast-moving landslides (e.g., debris avalanches and debris flows). From a geomechanical point of view, shear-rate-dependent shear strength should be examined in landslides. This paper presents the design of advanced ring-shear apparatus to measure the undrained shear strength of debris flow materials in Korea. As updated from conventional ring-shear apparatus, this apparatus can evaluate the shear strength under different conditions of saturation, drainage and consolidation. We also briefly discussed on the ring shear apparatus for enforcing sealing and rotation control. For the materials with sands and gravels, an undrained ring-shear test was carried out simulating the undrained loading process that takes place in the pre-existing slip surface. We have observed typical evolution of shear strength that found in the literature. This paper presents the research background and expected results from the ring-shear apparatus. At high shear speed, a temporary liquefaction and grain-crushing occurred in the sliding zone may take an important role in the long-runout landslide motion. Strength in rheology can be also determined in post-failure dynamics using ring-shear apparatus and be utilized in debris flow mobility.

산사태는 토사, 거석, 유목 등 산사태 물질의 중력사면 이동현상이다. 산사태는 수리학적, 지형학적, 지반공학적 요인에 따라 다양한 흐름 및 퇴적특성을 보인다. 흐름특성은 아주 느리게 움직이는 산사태(활동, 이류 등)에서 아주 빠르게 움직이는 산사태(토석사태, 토석류 등)까지 다양하다. 이런 점에서 산사태 발생과 확산 메커니즘의 이해를 위해 전단변형률에 따른 전단강도특성에 대한 연구가 필요하다. 본 연구는 한국형 산사태에 적합한 링 전단시험장치의 개발과 활용성에 대한 것이다. 링 전단시험장치는 산사태 유형별 피해 및 영향성 평가에 사용되는 전단강도를 측정할 수 있으며, 전단속도에 따른 산사태의 유동성을 평가하기 위한 장치이다. 비배수 전단강도 측정용 링 전단시험장치는 기존에 개발된 링 전단시험기의 수정보완형으로 '포화-압밀-배수-전단' 순으로 시험조건을 자유롭게 조절할 수 있다. 링 전단상자내 흙 시료의 전단강도의 정확한 측정을 위해 미끄럼 방지, 밀폐성 및 회전성 향상 기능을 갖춘 시험장치이다. 링 전단시험장치는 모래와 자갈 시료에 대한 예비실험을 수행하였으며 기존 시험결과와 비교하여 신뢰할 만한 결과를 확인하였다. 회전속도 100 mm/sec 로 구속할 때 배수조건에 따른 일시적 액상화 현상으로 인한 강도저하 현상이 관측되며, 전단면에 따른 입자파쇄 현상이 뚜렷하게 나타났다. 마지막으로 토석류 유변학에 기초하여 링 전단시험장치를 이용한 산사태 유동성 평가기법을 제안하였다.

Keywords

References

  1. Korea Institute of Geoscience and Mineral Resources (2011) Development of practical technologies for countermeasures for hazards in steep slope and abandoned mine areas, Ministry of Knowledge Economy, GP2009-020-2011(3), 306p.
  2. Bishop, A.W., Green, G.E., Garga, V.K., Andersen, A. and Brown, J.D. (1971) A new ring-shear apparatus and its application to the measurement of residual strength, Geotechnique, Vol. 21, pp. 273-328. https://doi.org/10.1680/geot.1971.21.4.273
  3. Comegna, L., Picarelli, L., Urciuoli, G. (2007) The mechanics of mudslides as a cyclic undrained-drained process, Landslides, Vol. 4, pp. 217-232. https://doi.org/10.1007/s10346-007-0083-2
  4. Coussot, P., Tocquer, L., Lanos, C., and Ovalez, G. (2009) Macroscopic vs. local rheology of yield stress fluids, Journal of Non-Newtonian Fluid Mechanics, Vol. 158, pp. 85-90. https://doi.org/10.1016/j.jnnfm.2008.08.003
  5. Hungr, O., and Morgenstern, N.R. (1984) High-velocity ring-shear tests on sand, Geotechnique, Vol. 34, No. 3, pp. 415-421. https://doi.org/10.1680/geot.1984.34.3.415
  6. Hvorslev, M.J. (1939) Torsion shear tests and their place in the determination of the shearing resistance of soils. Proc. Am. Soc. Test Mater, Vol. 39, pp. 999-1022.
  7. Jongmans, D., Bievre, G., Schwartz, S., Renalier, F., Beaurez, N., Orengo, Y. (2009) Geophysical investigation of a large landslide in glaciolacustrine clays in the Trieves area (French Alps), Engineering Geology, Vol. 109, pp. 45-56. https://doi.org/10.1016/j.enggeo.2008.10.005
  8. Jeong, S.W., Locat, J., Leroueil, S. and Malet, J.-P. (2010). Rheological properties of fine-grained sediments: the roles of texture and mineralogy, Canadian Geotechnical Journal, Vol. 47, pp. 1085-1100. https://doi.org/10.1139/T10-012
  9. Jeong, S.W. (2010) Grain size dependent rheology on the mobility of debris flows, Geosciences Journal, Vol. 14, pp. 359-369. https://doi.org/10.1007/s12303-010-0036-y
  10. Leroueil, S. (2001) Natural slopes and cuts: movement and failure mechanisms, Geotechnique, Vol. 51, No. 3, pp. 197-243. https://doi.org/10.1680/geot.2001.51.3.197
  11. Locat, J. and Demers, D. (1988) Viscosity, yield stress, remoulded strength, and liquidity index relationships for sensitive clays, Canadian Geotechnical Journal, Vol. 25, pp. 799-806. https://doi.org/10.1139/t88-088
  12. Locat, J. (1997) Normalized rheological behaviour of fine muds and their flow properties in a pseudoplastic regime, Proc. 1stInt. Conf. on Debris-Flow Hazards Mitigation, San Francisco. ASCE, New York, pp. 260-269.
  13. Malet, J.-P., Laigle, D., Remaitre, A., Maquaire, O. (2005) Triggering conditions and mobility of debris flows associated to complex earthflows, Geomorphology, Vol. 66, pp. 215-235. https://doi.org/10.1016/j.geomorph.2004.09.014
  14. Ovalez, G., Rodts, S., Chateau, X., Coussot, P. (2009) Phenomenology and physical origin of shear localization and shear banding in complex fluids, Rheologica Acta, Vol. 48, pp. 831-844. https://doi.org/10.1007/s00397-008-0344-6
  15. Picarelli, L., Urciuoli, G., Ramondini, M., Comegna, L. (2005) Main features of mudslides in tectonised highly fissured clay shales, Landslides, Vol. 2, pp. 15-30. https://doi.org/10.1007/s10346-004-0040-2
  16. Sadrekarimi A., and Olson, S.M. (2010) Particle damage observed in ring shear tests on sands, Canadian Geotechnical Journal, Vol. 47, pp. 497-515. https://doi.org/10.1139/T09-117
  17. Sassa, K. (1992) Access to the dynamics of landslides during earthquakes by a new cyclic loading high-speed ring-shear apparatus, Proc. 6th International Symposium on Landslides, Christchurch, Vol. 3, pp. 1919-1937.
  18. Sassa, K. (1997) A new intelligent-type dynamic-loading ring-shear apparatus. Landslide News, No. 10, p. 33.
  19. Sassa, K., Fukuoka, H., Wang, G., Ishikawa, N. (2004) Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics, Landslides, Vol. 1, pp. 7-19. https://doi.org/10.1007/s10346-003-0004-y
  20. Stark, T.D., and Vettel, J.J. (1992) Bromhead ring shear test procedure, Geotechnical Testing Journal, ASTM, Vol.15, No.1, pp. 24-32. https://doi.org/10.1520/GTJ10221J
  21. Rodts, S., Baudez, J.C., and Coussot, P. (2005) From discrete to continuum flow in foams, Europhysics Letters, Vol. 69, No. 4, pp. 636-642. https://doi.org/10.1209/epl/i2004-10374-3
  22. Tika, T.E., Vaughan, P.R., and Lemos, L.J. (1996) Fast shearing of pre-existing shear zones in soil, Geotechnique, Vol. 46, No. 2, pp. 197-233. https://doi.org/10.1680/geot.1996.46.2.197
  23. Tika, T.E. and Hutchinson, J.N. (1999) Ring shear tests on soil from the Vaiont landslide slip surface, Geotechnique, Vol. 49, No. 1, pp. 59-74. https://doi.org/10.1680/geot.1999.49.1.59
  24. Van Asch, Th.W.J., Malet, J.-P., Van Beek, L.P.H., and Amitrano, D. (2007) Techniques, issues and advances in numerical modeling of landslide hazard, Bulletin de la Societe Geologique de France, Vol. 178, No. 2, pp. 65-88. https://doi.org/10.2113/gssgfbull.178.2.65
  25. Van Asch, Th.W.J., Van Beek, L.P.H., and Boggard, T.A. (2007) Problems in predicting the mobility of slow-moving landslides, Engineering Geology, Vol. 91, pp. 46-55. https://doi.org/10.1016/j.enggeo.2006.12.012
  26. Wang. F.W., Sassa, K., and Wang, G. (2002) Mechanism of a longrunout landslide triggered by the August 1998 heavy rainfall in Fukushima Prefecture, Japan, Engineering Geology, Vol. 63, pp. 169-185. https://doi.org/10.1016/S0013-7952(01)00080-1
  27. WP/WLI. (1995) A suggested method for describing the rate of movement of a landslide. International Union of Geological Sciences Working Group on Landslides: Bulletin of the International Association of Engineering Geology, Vol. 52, No. 1, pp. 75-78.

Cited by

  1. Ring Shear Characteristics of Two Different Soils vol.29, pp.5, 2013, https://doi.org/10.7843/kgs.2013.29.5.39
  2. Shear and viscous characteristics of gravels in ring shear tests vol.22, pp.1, 2018, https://doi.org/10.1007/s12303-017-0062-0
  3. Shear-Rate Dependent Ring-Shear Characteristics of the Waste Materials of the Imgi Mine in Busan vol.30, pp.7, 2014, https://doi.org/10.7843/kgs.2014.30.7.5
  4. Shear behavior of waste rock materials in drained and undrained ring shear tests vol.18, pp.4, 2014, https://doi.org/10.1007/s12303-014-0030-x