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BASICALLY DISCONNECTED COVERS OF
THE EXTENSION kX OF A SPACE X

CHANG IL Kim

ABSTRACT. Observing that every Tychonoff space X has a weakly Lin-
delof extension kX and the minimal basically diconneted cover AkX of
kX is weakly Lindelsf, we first show that Apx : AkX — kX is a 2#-
irreducible map and that ABX = BAkX. And we show that kAX = AkX
if and only if A’}( : kAX — kX is an onto map and SAX = ASX.

1. Introduction

All spaces in this paper are assumed to be Tychonoff spaces and X (vX,
resp.) denotes the Stone-Cech compactification(Hewitt realcompactification,
resp.) of X.

Iliadis constructed the absolute of a Hausdorff space X, which is the mini-
mal extremally disconnected cover (E(X),mx) of X and they turn out to be
the perfect onto projective covers([4]). To generalize extremally disconnected
spaces, basically disconnected spaces, quasi-F spaces and cloz-spaces have been
introduced and their minimal covers have been studied by various aurthors([2],
[3], [5], [6], [8]). In these ramifications, minimal covers of compact spaces can
be nisely characterized.

In particular, Vermeer showed that every space X has the minimal basically
disconnected cover (AX,Ax) and that for any compact space X, AX is given
by the Stone space S(0Z(X)#) of a o-complete Boolean algebra o Z(X)# ([7]).
For any extension vX of a space X, relations of AvX and yAX have been
studied([2], [3], [4], [5]). In fact, for any space X, E(X) = BE(X) and
conditions on a space X that is equivalent to E(vX) = vE(X)(AvX = vAX,
BAX = ABX, resp.) is known([7], [6]).

For any space X, there is an extension (kX, kx) of X such that

(1) kX is a weakly Lindelof space, and

(2) for any continuous map f : X — Y, there is a continuous map f* :
kX — kY such that f* |x= £([9]).
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The purpose to write this paper is to find properties of the minimal basically
connected cover AkX of kX and relations of AkX and kAX. For any space X,
we first show that AkX is a weakly Lindelof space and Apx : AkX — kX isa
z#-irreducible map and that ABX = BAkX. And we show that kAX = AkX
if and only if A];( :kAX — kX is an onto map and SAX = ASX.

For the terminology, we refer to [1] and [7].

2. Basically disconnected spaces

The set R(X) of all regular closed sets in a space X, when partially ordered
by inclusion, becomes a complete Boolean algebra, in which the join, meet, and
complementation operations are defined as follows : for any A € R(X) and any
{A:|i€ I} S R(X),

\/{Az | 1€ I} = Cl)((U{AZ' | 1€ I}),

NA; i eI} =clx(intx(N{A4; |i € I})), and

A =clx(X — A)
and a sublattice of R(X) is a subset of R(X) that contains @, X and is closed
under finite joins and meets.

Recall that a map f: Y — X is called a covering map if it is a continuous,
onto, perfect, and irreducible map.

Lemma 2.1. ([5], [7]) (1) Let f : Y — X be a covering map. Then the map
Y RY) — R(X), defined by ¥v(A) = AN X, is a Boolean isomorphism
and the inverse map ¥~ of v is given by Yv~1(B) = cly (f~(intx(B)))) =
cly (inty (f~1(B))).

(2) Let X be a dense subspace of a space K. Then the map ¢ : R(K) —
R(X), defined by ¢(A) = AN X, is a Boolean isomorphism and the inverse

map ¢~ L of ¢ is given by ¢~ (B) = clx(B).

A lattice L is called o-complete if every countable subset of L has join and
meet. For any subset M of a Boolean algebra L, there is the smallest o-
complete Boolean subalgebra oM of L containing M. Let X be a space and
Z(X) the set of all zero-sets in X. Then Z(X)# = {clx(intx(Z)) | Z € Z(X)}
is a sublattice of R(X). Note that for any zero-set A in X, there is a zero-set
B is X such that A = BNX. Hence, by Lemma 2.1, 0 Z(X)#, 0 Z(vX)# and
o Z(BX)# are Boolean isomorphic.

Definition 1. A space X is called basically disconnected if for any zero-set Z
in X, intx(Z) is closed in X, equivalently, Z(X)# = B(X), where B(X) is the
set of all clopen sets in X.

A space X is a basically disconnected space if and only if 5X is a basically
disconnected space. Suppose that X is a basically disconnected space. Then for
any sequence (By,) in B(X), A{B, | n € N} =clx(intx(N{B, | n € N})) €
Z(X)# and V{B,, |n € N} = clx(intx (U{B, | n € N})) € Z(X)#. Hence X
is a basically disconnected space if and only if Z(X)# is a o-complete Boolean
algebra.
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Definition 2. Let X be a space. Then a pair (Y, f) is called

(1) a cover of X if f:Y — X is a covering map,

(2) a basically disconnected cover of X if (Y, f) is a cover of X and Y is a
basically disconnected space, and

(3) a minimal basically disconnected cover of X if (Y, f) is a basically discon-
nected cover of X and for any basically disconnected cover (Z, g) of X, there
is a covering map h : Z — Y such that foh =g.

Let X be a space and B a Boolean subalgebra of R(X). Let S(B) = {a | a is
a B-ultrafilter} and for any B € B, 8 = {a € S(B) | B € a}. Then the space
S(B), equipped with the topology for which {~5 | B € B} is a base, called the
Stone-space of B. Then S(B) is a compact, zero-dimensional space.

Vermeer([8]) showed that every space X has a minimal basically discon-
nected cover (AX,Ax) and that if X is a compact space, then AX is the
Stone-space S(0Z(X)#) of 0Z(X)# and Ax(a) =N{A| A € a} (a € AX).

Let X be a space. Since 0Z(X)# and 0Z(3X)# are Boolean isomorphic,
S(cZ(X)#) and S(cZ(BX)#) are homeomorphic.

Let X,Y be spaces and f : ¥ — X a map. For any U C X, let
fv : f7Y(U) — U denote the restriction and co-restriction of f with re-
spect to f~1(U) and U, respectively. For any space X, let (A3X,Ag) denote
the minimal basically disconnected cover of 5X.

Lemma 2.2. ([5]) Let X be a space. Then AEI(X) is a basically disconnected

space if and only if (Agl(X)7 Ag, ) is the minimal basically disconnected cover
of X.

We recall that a covering map f : Y — X is called z#-irreducible(cz%-
irreducible, resp.) if f(Z(Y)#) = Z(X)#(f(cZ(Y)#) = oZ(X)#, resp.).
Let f : Y — X be a covering map and Z a zero-set in X. By Lemma
2.1, f(cly (inty (f~1(2)))) = clx(intx(Z)) and cly (inty (f~1(Z))) € Z(X)*.
Hence Z(X)# C f(Z(Y)#) and so f : Y — X is z#-irreducible if and only if
f(Z(Y)#) C Z(X)#. Using these we have the following :

Proposition 2.3. Let f: Y — X and g: W — Y be covering maps. Then
(1) if f:Y — X is 2% -irreducible, then f : Y — X is oz% -irreducible,
(2) fog: W — X is z#-irreducible if and only if f : Y — X g: W — Y

are 2% -irreducible , and
(3)if f: Y — X is 2% -irreducible and X is a basically disconnected space,

then f is a homeomorphism.

Definition 3. A space X is called a weakly Lindeldf space if for any open cover
U of X, there is a countable subset V of U such that U{V | V € V} is dense in
X.

It is well-known that if X is a weakly Lindelof space, then SAX = ABX([3]),
that is, there is a homeomorphism map h : BAX — ABX such that Agoh =

Ag(, where Ai : BAX — BX is the Stone-extension of Sx o Ax. Moreover,
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if X is a weakly Lindel6f space, then (Agl(X ), Agy ) is the minimal basically
disconnected cover of X ([3]).

3. A minimal basically disconnected cover of kX

A z-filter F on a space X is called real if F is closed under the countable
intersection.

For any space X, let kX = vX U{p € X — vX | there is a real z-filter F
on X such that N{cl,x (F) | F € F} =0 and p € N{clgx(F) | F € F}}. Then
kX is a extension of a space X such that vX C kX C X([9]).

Lemma 3.1. ([9]) For any space X, kX is a weakly Lindeldf space.

It is well known that a space X is weakly Lindelof if and only if for any
Z(X)#filter A with the countable meet property, N{A | A € A} # 0.

Let X be a space. For any A € 0Z(BX)%, let EZZWX)# =Y and T4 N
AkX = Xa. Then forany A € 0 Z(BX)#, Ag(Xa) = Aand Apx(Aa) = ANkX,
because AkX = Algl(kX) and AkX = A,ka'

Theorem 3.2. Let X be a space. Then we have the following :
(1) (Agl(kX), Ag, ) is the minimal basically disconnected cover of X,
(2) AkX is a weakly Lindeldf space, and
(3) Aix : AkX — kX is a 27 -irreducible map.

Proof. (1) By Lemma 3.1, kX is a weakly Lindel6f space and by Lemma 2.4,
(Agl(kX )» A, ) is the minimal basically disconnected cover of X.

(2) Let A be a z-filter on AkX with the countable meet property and N{A4 |
A € A} = (0. Suppose that N{Arx(A) | A € A} # 0. Pick z € N{Arx(4) |
A € A}. Since A has the countable meet property, A has the finte intersection
property. Hence {AN A, y(z) | A € A} is a family of closed sets in A,y (z)
with the finite intersection property. Since Ay (z) is a compact subset in AkX,
N{ANA x(z) | A€ A} # 0 andsonN{A| A€ A} # (. This is a contracdiction.
Thus N{Arx(A) | A€ A} = 0.

Since kX is a weakly Lindelof space, there is a sequence (A4,,) in A such that
clex (U{kX — Agx(A,) | n € N}) = kX. Let A € A. Then Ay (Apx(AkX —
A)) D AkX — A and hence Apx(A") D Apx(AkX — A) D kX — Agx(A). Thus
clx (U{Agx(AL) | n € N}) = kX. Note that

kX = clpx (U{Arx(Al) | n € N})
= clpx (Arx(U{A], | n € N}))
= Npx (clpx (U{A], | n € N}))
= Npx(V{Al, |n € N}).

Since Agx is an irreducible map, V{A4] | n € N} = AkX and so (V{A4), | n €
N} = A{A, | n € N} = 0. Since A has the countable meet property, it is
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a contradiction. Hence N{A | A € A} # () and so AkX is a weakly Lindelof
space.

(3) Take any zero-set Z in AkX. Since AkX is a weakly Lindelof space,
AkX — Z is an open weakly Lindel6f subspace of AkX. By (1), there is a
sequence (Z,) in 0 Z(BX)* such that for any n € N, ¥z NAkX CAKX —Z

and
AkX — Z = clparx (U{Zz, NAEX | ne N}H)N(AkX — Z)

= CZAkx(U{)\Z" n e N}) n (Ak‘X — Z)
=(V{Az, |ne N})N(AEX — 2).
Hence U{Az, |n€ N} CAkX —Z CV{\z, | n € N} and so clprx (intrex (Ak
X — 7)) =V{Az, | n€ N}. Thus clapx(intarx(Z)) = AM{Az; | n € N}. Note
that for any A € 0 Z(BX)#, Aarx(Aa) = ANEkX. By Lemma 2.1,
AAkX(CZAkX(intAkX(Z))) = AAkX(/\{)\Z,’L ‘ n e N})
= (MAarx(Az,) [n € N})
=NZ, NkX|neN}
=(MZ, |ne N})NkX
and hence Appx (clarx (intarx (Z))) € 0 Z(kX)#. Thus Appx is a 027 -irreduci
-ble map. (Il

Let X be a space. Then SAX = ABX if and only if Ax is z#-irreducible([3]).
Using this, we have the following :

Corollary 3.3. For any space, ABX = SAkX.

Lemma 3.4. ([8]) For any continuous map f : X — Y, there is a unique
continuous map f*: kX — kY such that ffokx =ky o f.

Let X be a space. Then there is a covering map h : SAX — ABX such
that Ag o ho fax = Bx o Ax. By Lemma 3.4, there is a continuous map
Alj( : kAX — kX such that A’% okax = kx oAx. Hence there is a continuous
map tx : kAX — AkX such that Sapx otx = hofBrax and Appx otx = A’)“(.
If tx is a homeomorphism, then we write kAX = AkX

Corollary 3.5. Let X be a space. If kKAX = AkX, then BAX = ABX.

Proof. Since tx : kAX — AkX is a homeomorphism and Agx : AKX — kX
is oz#-irreducible, A% : kAX — kX is oz%-irreducible. Take any zero-set Z
in BAX. Then, by Lemma 2.1, clgax (intpax(Z)) NkAX € Z(kAX)#. Hence
A’%(ClﬁAx(int/gAx(Z)) NEAX) = Ag(h(clgax (intgax (Z)))) NkX
coZ(kX)*.
By Lemma 2.1, Ag(h(clgax (intpax(2)))) € 0 Z(BX)# and so Agoh is a o27-

irreducible map. Thus h : BAX — ABX is a oz#-irreducible map. Since
BAX and ASX are basically disconnected spaces, h is a homeomorphism. [
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Let X be a space such that SAX = ASX. By Corollary 3.5, there is a
homeomorphsim my : BAX — BAkX such that Barx otx = mx o Brax.
Since myx o Bpax is an embedding, tx is an embedding.

A subspace X of a space Y is called C*-embedded in Y if for any real-valued
continuous map f : X — R, there is a continuous map g : Y — R such that
g |x= f. For any space X, X is C*-embedded in X andif X CY C W C X,
then Y is C*-embedded in W ([1]). Hence we have the following

Corollary 3.6. Let X be a space such that SAX = ABX. Then EAX is a
C*-embedded subspace of AkX.

Theorem 3.7. Let X be a space. Then the following are equivalent:
(1) kAX = AKX,
(2) tx is an onto map and FAX = ABX, and
(3) A% is an onto map and BAX = ABX.

Proof. (1) = (2) By Corollary 3.5, it is trivial.

(2) = (3) Since Ajx and tx are onto maps, A% is an onto map.

(3) = (1) Let f = A%. Take any z € kX. Since f is an onto map and Ax is
a covering map, f(kAX —AX) = kX — X ([7]). Since Brx o f = Agohofrax,
J ) =(Agoh) ! (z) C kAX — AX. Since Agoh is a covering map, f~'(z)
is a compact subset of kAX and hence f is a compact map. By Corollary 3.6,
flx) = Agl(ac) C AKX.

Let F be a closed set in kAX and x € kX —f(F). Then f~1(x)NF = (). Since
f~(x) is a comact space and ABX is the Stone space of S(0Z(3X)"), there
isa B € oZ(BX)* such that f~1(z) C ¥ and F C Y. Since Ag(¥y) = B’
and Ay'(z) N Sp = f~H(z)NEp =0, = ¢ B Since cix(f(F)) C B,
x ¢ clx(f(F)). Thus f is a closed map and so f is a perfect map.

Since mx o Ag o Sax = Brx oA’j( and mx o Ag is a covering map, Alﬁ( is a
covering map. Since kA X is a basically disconnected space, there is a covering
map [ : kAX — AkX such that Axgx ol = A%. Since AX = A;'(X) and

AkX = Agl(kX), lokax = txokax, where kpx : AX — kAX is the inclusion
map. Since kpx is a dense embedding, [ = tx and tx is a homeomorphism. [
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