DOI QR코드

DOI QR Code

A Study on the Correlations between Molecular Structures of Soil Humins and Sorption Properties of Phenanthrene

토양 휴민(Humin)의 분자구조 특성과 Phenanthrene 흡착상수와의 상관관계에 대한 연구

  • Lee, Doo-Hee (Department of Energy and Environment, The Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Eom, Won-Suk (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Science and Technology)
  • 이두희 (서울과학기술대학교 에너지환경대학원 에너지환경공학과) ;
  • 엄원숙 (서울과학기술대학교 환경공학과) ;
  • 신현상 (서울과학기술대학교 환경공학과)
  • Received : 2013.09.12
  • Accepted : 2013.11.24
  • Published : 2013.12.30

Abstract

In this study, sorption coefficients (${\log}K_{OC}$, n) for the binding of phenanthrene (PHE) to soil humins, insoluble fraction of soil humc substances (HS), were determined and relationship between the sorption coefficients and structural characteristics of the soil humins were investigated. The soil humins used in the present study were isolated from 7 different soils including 5 domestic soils, an IHSS standard and a peat soil, and characterized by elemental analysis and CPMAS $^{13}C$ NMR method. $^{13}C$ NMR spectral features indicate that the soil humins are mainly made up of aliphatic carbons (57.1~72.3% in total carbon) with high alkyl-C moiety, and the alkyl-C contents ($C_{Al-H,C}$, %) was in order of granite soil Hu (26~42%) > volcanic ash soil, HL Hu (23.9%) > Peat Hu (14.0%). The results of correlation study show that a positive relationship ($r^2$ = 0.77, p < 0.05) between organic carbon normalized-sorption coefficients ($K_{OC}$, mL/g) and alkyl-C contents($C_{Al-H,C}$, %), while negative relationship ($r^2$ = (-)0.74, p < 0.05) between Freundlich sorption parameter (n) and H,C-substituted aromatic carbon contents ($C_{Ar-H,C}$, %). The magnitude of $K_{OC}$ values are also negatively well correlated with polarity index (e.g., PI, N + O)/C) ($r^2$ = (-)0.74, p < 0.1). These results suggest that the binding capacity (e.g., $K_{OC}$) for PHE is increased in soil humin molecules having high contents of alkyl-C or lower polarity, and nonlinear sorption for PHE increased as the H,C-substituted aromatic carbon contents ($C_{Ar-H,C}$, %) in the soil humins increased. The PHE sorption characteristics on soil humins are discussed based on the dual reactive mode of sorption model.

본 연구에서는 불용성 토양 휴믹물질(HS)인 토양 휴민(Hu)을 대상으로 페난트린(PHE)과의 흡착상수($K_{OC}$, n)를 조사하였고, 각 휴민 분자의 물질특성과 흡착상수와의 상관관계를 조사하였다. 토양 휴민은 한라산 토양을 포함한 국내 5개 지역의 토양과 국제휴믹학회(IHSS) 표준토양 및 이탄토(Peat)에서 분리한 7종을 사용하였으며, 원소성분비 및 고체 $^{13}C$ NMR을 이용한 탄소형태별 분포(%) 등을 조사하였다. 토양 휴민은 알킬탄소를 주요 성분으로 하는 높은 지방족 탄소함량(57.1~72.3%)을 가진 분자구조 특성을 보였으며, 추출원별 알킬탄소의 함량($C_{Al-H,C}$, %)은 화강암 기원의 토양 Hu (26~42) > 화산재토양 기원의 HL Hu (23.9) > Peat Hu (14.0)의 순으로 나타났다. 토양 휴민의 물질특성과 PHE 흡착상수의 상관성 해석결과, 유기탄소 표준화분배계수($K_{OC}$, mL/g) 값은 알킬탄소 함량(%)과 높은 상관성($r^2$ = 0.77, p < 0.05)을 보인 반면, Freundlich plot을 통해 얻은 비선형 흡착상수(n)는 H,C-치환 방향족탄소 함량($C_{Ar-H,C}$, %)과 높은 상관성($r^2$ = (-)0.74, p < 0.05)을 보였다. $K_{OC}$ 값은 분자 극성도(PI, N+O)/C)와도 높은 상관성($r^2$ = (-)0.74, p < 0.1)을 보여, 분자극성도 값도 소수성유기물의 흡착능 예측에 유용한 물질특성 인자임을 확인하였다. 이상의 결과로 부터 토양휴민 분자 내 알킬탄소의 함량이 높거나, 분자극성도가 낮을수록 PHE의 흡착능이 증가하며, 방향족탄소 함량이 높을수록 흡착의 비선형성(nonlinear sorption)이 증가하는 경향이 있음을 알 수 있었으며, 이러한 토양 휴민의 PHE 흡착특성은 dual reactive mode 흡착모델에 적용하여 해석하였다.

Keywords

References

  1. Chiou, C. T., Partition and adsorption of organic contaminants in environmental systems, John Wiley & Sons, Hoboken, NJ(2002).
  2. Edwards, N., "Polynuclear aromatic hydrocarbons (PAHs) in the terrestrial-A review," J. Environ. Qual., 12, 427-441 (1983).
  3. US EPA (Environmental Protection Agency), http://www.epa.gov/ttn/atw/hlthef, (2003).
  4. Guerin, W. F. and Boyd, S. A., "Bioavailability of naphthanene associated with natural and synthetic sorbents," Water Res., 31, 1504-1512(1997). https://doi.org/10.1016/S0043-1354(96)00402-2
  5. Holman, H.-Y. N., Nieman, K., Sorensen, D. L., Miller, C. D., Martin, M. C., Borch, T., McKinney, W. R. and Sims, R. C., "Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies," Environ. Sci. Technol., 35(6), 1270-1280(2002).
  6. Chiou, C. T., Porter, P. E. and Schmedding, D. W., "Partition equilibria of nonionic organic compounds between soil and water," Environ. Sci. Technol., 17, 227-231(1983). https://doi.org/10.1021/es00110a009
  7. Huang, W., Peng, P., Yu, Z. and Fu, J., "Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments," Appl. Geochem., 18, 955-972(2003). https://doi.org/10.1016/S0883-2927(02)00205-6
  8. Xia, B., Yu, Z., Haung, W., Song, J. and Peng, P., "Black carbon and kerogen in soils and sediments. 2. Their roles in equilibrium sorption of less-polar organic pollutants," Environ. Sci. Technol., 38, 5842-5852(2004). https://doi.org/10.1021/es049761i
  9. Sun, K., Jin, J., Kang, M., Zhang, Z., Pan, Z., Wang, Z., Wu, F. and Xing, B., "Isolation and characterization of different organic matter fractions from a same soil source and their phenanthrene sorption," Environ. Sci. Technol., 47, 5138-5145(2013). https://doi.org/10.1021/es3052087
  10. Burkhard, L. P., "Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals," Environ. Sci. Technol., 34, 4663-4668(2000). https://doi.org/10.1021/es001269l
  11. Perminova I. V., Grechishchev N. Y., Kovalevskii D. V., Kudryavtsev A. V., Petrosyan V. S. and Matorin D. N. "Quantification and Prediction of the Detoxifying Properties of Humic Substance Related to Their Chemical Binding to Polycyclic Aromatic Hydrocarbons," J. Environ. Sci. Technol, 35, 3841-3848(2001). https://doi.org/10.1021/es001699b
  12. Xing, B., "Sorption of napthalene and phenanthrene by soil humic acids," Environ. Pollut., 111, 303-309(2001). https://doi.org/10.1016/S0269-7491(00)00065-8
  13. Mao, J., Hundal, L., Thompson, M. and Schmidt-Rohr, K., "Correlation of poly (methylene)-rich amorphous aliphatic domains in humic substances with sorption of a nonpolar organic contaminant, phenanthrene," Environ. Sci. Technol., 36, 929-936(2002). https://doi.org/10.1021/es011054r
  14. Salloum, M. J., Chefetz, B. and Hatcher, P. G., "Phenanthrene sorption by aliphatic-rich organic matter," Environ. Sci. Technol, 36, 1953-1958(2002). https://doi.org/10.1021/es015796w
  15. Aiken, G. R., McKnight, D. M. and Wershaw, R. L., (eds), Humic Substances in Soil, Sediment and Water; Geochemistry, Isolation, and Characterization, John Wiley and Sons, USA, pp. 1-12(1985).
  16. Rice J. A., "Humin," Soil Sci., 166(11), 848-857(2001). https://doi.org/10.1097/00010694-200111000-00009
  17. Song, J. Peng, P. and Huang, W., "Black carbon and kerogen in soils and sediments. 1. Quantification and charcterization," Environ. Sci. Technol., 36, 3960-3967(2002). https://doi.org/10.1021/es025502m
  18. Xia, B., Yu, Z., Haung, W., Song, J. and Peng, P., "Black carbon and kerogen in soils and sediments. 2. Their roles in equilibrium sorption of less-polar organic pollutants," Environ. Sci. Technol., 38, 5842-5852(2004). https://doi.org/10.1021/es049761i
  19. Hur, J., Lee, D. H. and Shin, H. S. "Comparison of the structural, spectroscopic, and phenanthrene binding characteristics of humic acids from soils and lake sediments" Org. Geochem., 40(9), 1091-1099(2009). https://doi.org/10.1016/j.orggeochem.2009.07.003
  20. IHSS (International Humic Substance Society), http://www.ihss.gatech.edu, (1981).
  21. Lee, C. H., Shin, H. S. and Kang, K. H., "Chemical and spectroscopic characterization of peat moss and its different humic fractions (humin, humic acid and fulvic acid)," J. Kor. Soc. Soil Ground. Environ., 9(4), 42-51(2004).
  22. Preston, C. M. and Newman, R. H., "Demonstration of spatial heterogeneity in the organic matter of de-ashed humic samples by solid-state $^{13}C$ CPMAS NMR," Can. J. Soil. Sci., 72, 13-19(1992). https://doi.org/10.4141/cjss92-002
  23. Lim, D. M., Lee, S. S. and Shin, H. S., "Sorption of PAHs by soil humins and effect of soil inorganic matrixs," J. Kor. Soc. Environ. Eng., 28(12), 1337-1346(2006).
  24. Chen, B., Johson, B. J., Chefetz, B., Zhu, L. and Xing, B., "Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: Role of polarity and accessibility," Environ. Sci. Technol., 39(16), 6138-6146(2005). https://doi.org/10.1021/es050622q
  25. Ran, Y., Sun, K., Yang, Y., Xing, B. and Zeng, E., "Strong sorption of phenanthrene by condensed organic matter in soils and sediments," Environ. Sci. Technol., 41, 3952-3958(2007). https://doi.org/10.1021/es062928i
  26. Gunasekara, A. S., Simpson, M. J. and Xing, B., "Indentification and characterization of sorption domains in soil organic matter using structurally midified humic acids," Environ. Sci. Technol., 37, 852-858(2003). https://doi.org/10.1021/es026151e
  27. Kang, S. and Xing, B., "Phenanthrene sorption to sequentially extracted soil humic acids and humins," Environ. Sci. Technol., 39, 134-140(2005). https://doi.org/10.1021/es0490828
  28. McGlinley, P. M., Katz, L. E. and Weber, W. J., "A distributed reactivity model for sorption by soils and sediments:2. Multicomponent systems and competitive effects," Environ. Sci. Technol., 27, 1524-1531(1993). https://doi.org/10.1021/es00045a006
  29. Chefetz, B. and Xing, B., "Relative role of aliphatic and aromatic moieties as sorption domain for organic compounds: A review," Environ. Sci. Technol., 43, 1680-1688(2009). https://doi.org/10.1021/es803149u
  30. Tang, J. and Weber, W., " Development of engineered natural organic sorbents for environmental applications. 2. Sorption characteristics and capacities with respect to phenanthrene," Environ. Sci. Technol., 40, 1657-1663(2006). https://doi.org/10.1021/es051665+