DOI QR코드

DOI QR Code

An Effect of the Micro Bubble Formation Depending on the Saturator and the Nozzle in the Dissolved Air Flotation System

DAF 공정에서 공기포화장치와 노즐 특성 별 미세기포 발생에 미치는 영향

  • Park, S.C. (Environment Research Department, Advanced Technology Institute, Hyundai Heavy Industries Co., Ltd.) ;
  • Oh, H.Y. (Environment Research Department, Advanced Technology Institute, Hyundai Heavy Industries Co., Ltd.) ;
  • Chung, M.K. (Environment Research Department, Advanced Technology Institute, Hyundai Heavy Industries Co., Ltd.) ;
  • Song, S.L. (Environment Research Department, Advanced Technology Institute, Hyundai Heavy Industries Co., Ltd.) ;
  • Ahn, Y.H. (Environment Research Department, Advanced Technology Institute, Hyundai Heavy Industries Co., Ltd.)
  • 박상철 (현대중공업 기반기술연구소 환경연구실) ;
  • 오호영 (현대중공업 기반기술연구소 환경연구실) ;
  • 정몽규 (현대중공업 기반기술연구소 환경연구실) ;
  • 송석용 (현대중공업 기반기술연구소 환경연구실) ;
  • 안용희 (현대중공업 기반기술연구소 환경연구실)
  • Received : 2013.03.27
  • Accepted : 2013.11.28
  • Published : 2013.12.30

Abstract

The saturator and injection nozzle are important facilities on the dissolved air flotation process. To increase the formation of micro bubble, it is required to improve the air dissolving performance in the saturator and keep the pressure uniform from the saturator to the nozzle. This study aimed to evaluate the performance of the saturator and the hydraulic effect of the nozzle and the pipe structure. The air volume concentration, bubble size and bubble residual time were measured in the test. The saturator, which had mounted with the spray nozzle, showed a good performance for bubble formation. Also, the characteristics of micro bubble formation were influenced by pressure uniformity and flow velocity through the orifice in the nozzle.

DAF (Dissolved air flotation) 공정에서 공기포화장치(Saturator)와 미세기포 발생노즐은 미세기포 형성에 중요한 영향을 미치는 장치이다. 미세기포 발생 효율을 증가시키기 위해서는 공기포화장치 용기 안에서 기-액 접촉 효율을 증가시키고, 미세기포 발생노즐까지 이송 배관 내 압력을 일정하게 유지해 주어야 한다. 본 연구에서는 공기포화장치 내 순환수 유입 분사노즐과 포화수 이송 배관, 미세기포 발생노즐에 의한 미세기포 발생에 미치는 영향을 공기체적법과 기포 크기, 기포의 잔류시간 측정을 통해 비교해 보았다. 순환수 유입 분사노즐을 설치하고, 포화수의 이송 배관 내 압력손실이 발생하지 않는 구조, 미세기포 발생노즐의 통과유속을 증가시킬 경우 미세기포 발생 성능이 증가하였다.

Keywords

References

  1. Haarhoff, J. and Steinbach, S., "A comprehensive method for measuring the air transfer efficiency of pressure saturators," Water Res., 31(5), 981-990(1997). https://doi.org/10.1016/S0043-1354(96)00328-4
  2. Steinbach, S. and Haarhoff, J., "A simplified method for assessing the saturation efficiency at full-scale dissolved air flotation plants," Water Sci. Technol., 38(6), 303-310(1998).
  3. Dupre, V., Ponasse, M., Aurelle, Y. and Secq, A., "Bubble formation by water release in nozzles-I. Mechanisms," Water Res., 32(8), 2491-2497(1998). https://doi.org/10.1016/S0043-1354(97)00435-1
  4. Ponasse, M., Dupre, V., Aurelle, Y. and Secq, A., "Bubble formation by water release in nozzles-II. Influence of various parameters on bubble size," Water Res., 32(8), 2498-2506(1998). https://doi.org/10.1016/S0043-1354(97)00436-3
  5. Edzwald, J. K. and Haarhoff, J., "Dissolved air flotation for water clarification," American Water Works Association, McGraw-Hill(2012).
  6. Han, M. Y., Park, Y. H. and Yu, T. J., "Development of a new method of measuring bubble size," Water Sci. Technol.: Water Supply, 2(2), 77-83(2002).
  7. Couto, H. J. B., Nunes, D. G., Neumann, R. and Franca, S. C. A., "Micro-bubble size distribution measurements by laser diffraction technique," Minerals Eng., 22, 330-335(2009). https://doi.org/10.1016/j.mineng.2008.09.006
  8. Rodrigues, R. T. and Rubio, J., "New basis for measuring the size distribution of bubbles," Minerals Eng., 16, 757-765(2003). https://doi.org/10.1016/S0892-6875(03)00181-X
  9. Moruzzi, R. B. and Reali, M. A. P., "Characterization of micro-bubble size distribution and flow configuration in DAF contact zone by a non-intrusive image analysis system and tracer tests," Water Sci. Technol., 61(1), 253-262(2010). https://doi.org/10.2166/wst.2010.784
  10. Oliveira, C., Rodrigues, R. T. and Rubio, J., "A new technique for characterizing aerated flocs in a flocculation microbubble flotation system," Int. J. Mineral Proc., 96, 36-44(2010). https://doi.org/10.1016/j.minpro.2010.07.001
  11. Han, M. Y., Park, Y. H., Lee, J. and Shim, J. S., "Effect of pressure on bubble size in dissolved air flotation," Water Sci. Technol.: Water Supply, 2(5-6), 41-46(2002).
  12. Ljunggren, M., Jonsson. L., and La Cour Jansen, J., "Paticle visualization-a tool for determination of rise velocities," Water Sci. Technol., 50(12), 229-236(2004).
  13. Dassey, A. and Theegala, C., "Optimizing the Air Dissolution Parameters in an Unpacked Dissolved Air Flotation System," Water, 4, 1-11(2012).
  14. Haarhoff, J. and Rykaart, E. M., "Rational design of packed saturators," Water Sci. Technol., 31(3-4), 179-190(1995).
  15. Haarhoff, J. and Steinbach, S., "A model for the prediction of the air composition in pressure saturators," Water Res., 30(12), 3074-3082(1996). https://doi.org/10.1016/S0043-1354(96)00170-4
  16. Ahn, H. W., Kwon, S. B. and Kwak, D. H., "Design and Operation Guidebook for water Treatment Process with Appling DAF Unit," K-water(2006).

Cited by

  1. An Experimental Study on the Orifice Nozzle System that Generates Micro-bubbles by Self-suction of Air with a Recirculating Flow vol.17, pp.1, 2018, https://doi.org/10.14775/ksmpe.2018.17.1.082