DOI QR코드

DOI QR Code

HRT 변화에 따른 미세입자 분리 특성

Characteristics of Micro-Particle Separation according to HRT Changes

  • 안광호 (한국건설기술연구원 환경연구실) ;
  • 안재환 (한국건설기술연구원 환경연구실) ;
  • 김이태 (한국건설기술연구원 환경연구실) ;
  • 김석구 (한국건설기술연구원 환경연구실) ;
  • 강성원 (한국건설기술연구원 환경연구실) ;
  • 박은주 (한국건설기술연구원 환경연구실) ;
  • 이영섭 (인천대학교 임베디드시스템공학과)
  • Ahn, Kwangho (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Ahn, Jaehwan (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Kim, I-Tae (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Kim, Seoggu (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Kang, Sungwon (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Park, Eunzoo (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Lee, Youngsup (Department of Embedded systems Engineering, Incheon University)
  • 투고 : 2013.11.12
  • 심사 : 2013.12.02
  • 발행 : 2013.12.30

초록

유체 내에서 발생된 음파 또는 초음파가 반사벽에 의해 반대방향으로 진행하면서 일정한 파동을 형성하는 음파를 음향정재파(acoustic standing wave)라고 한다. 본 연구에서는 주파수 1.0 MHz와 2.0 MHz의 음향정재파 발생모듈을 설치한 연속식의 입자분리장치에서, 유입수의 층류(laminar flow)를 고려하여, 수리학적체류시간(HRT) 변화에 따른 입자분리 특성을 살펴보았다. 정재파 가동에 다른 입자분리장치 내의 수온은 $1.3{\sim}2.8^{\circ}C$ 정도 증가하였으나 정재파 형성에 큰 영향을 주지 않았다. 주파수 1.0 MHz 가동 시 HRT 1시간에서 2시간, 4시간으로 길어짐에 따라 입자분리 효율(탁도)은 각각 64.1%, 70.0%, 74.3%로, 2.0 MHz에는 HRT에 따라 각각 58.0%, 61.8%, 70.7%로 증가된 것으로 나타났다. 즉, 동일한 주파수일 경우 HRT에 따라 처리효율이 10% 이상 차이가 발생하고 있으며, 1.0 MHz 주파수에서는 2시간, 2.0 MHz에서는 4시간 정도에서 70% 이상의 처리효율을 유지할 수 있다. 주파수 1.0 MHz와 2.0 MHz를 동시에 가동한 결과, HRT 1시간, 2시간, 4시간에서의 입자 분리 효율은 각각 63.8%, 70.6%, 77.6% 나타나 연속된 정재파의 발생 보다는 HRT가 입자분리에 많은 영향을 주는 것을 알 수 있었다.

Fluid generated within the sonic or ultrasonic waves are reflected by the wall, while the opposite direction forming a predetermined sound wave to the acoustic standing wave is referred to. In this study, the frequency of 1.0 MHz and 2.0 MHz acoustic standing wave generation module is installed in a continuous particle separation device, the laminar flow of influent, taking into account the hydraulic retention time (HRT) in accordance with changes in particle separation characteristics investigated. Operation of a standing wave in the particle separation device about $1.3{\sim}2.8^{\circ}C$ temperature is increased, but did not significantly affect the formation of standing waves. During operation, the HRT 1 hr frequency 1.0 MHz 2 hr, 4 hr longer as the particle separation efficiency (turbidity) were 64.1%, 70.0%, 74.3% and, 2.0 MHz has 58.0%, respectively, depending on HRT, 61.8%, 70.7% in the respectively. That is, the same frequency, the HRT treatment efficiency is 10% or more, depending on differences in generation and, 1.0 MHz frequency, 2 hr, 2.0 MHz 4 hr at about 70% or more of the processing efficiency can be maintained. Frequency of 1.0 MHz and 2.0 MHz operation at the same time, as a result, HRT 1 hr, 2 hr, 4 hr particle separation efficiency of 63.8%, respectively, 70.6%, 77.6%, rather than the generation of standing waves appear continuous HRT is affecting a lot of particles to separate could know.

키워드

참고문헌

  1. Hwang, S. H. and Koo, Y. M., "Effects of operation and design parameters on the recovery of microorganisms and particles in ultrasonic sedimentation," HWAHAH KONGHAK, 39(6), 788-793(2001).
  2. Cho, S. H., Park, J. H., Ahn, B. and Kim, K., "Finite element analysis of a particle manipulation system using ultrasonic standing wave," Trans. KSNVE, 20(1), 3-9(2010). https://doi.org/10.5050/KSNVE.2010.20.1.003
  3. Bekker, M. C., Mayer, J. P. Pertorius, L. and Van Der Merwe, D. F., "Separation of solid-liquid suspensions with ultrasonic acoustic energy," Water Res., 31(10), 2543-2549(1997). https://doi.org/10.1016/S0043-1354(97)00088-2
  4. Laurell, T., Petersson, F. and Nilsson, A., "Chip integrated strategies for acoustic separation and manipulation of cells and particles," Chem. Soc. Rev., 36, 492-506(2007). https://doi.org/10.1039/b601326k
  5. Gupta, S. and Feke, D. L., "Acoustically driven collection of suspended particles within porous media," Ultrasonics, 35, 131-139(1997). https://doi.org/10.1016/S0041-624X(96)00087-X
  6. Shin, B. S. and Danao, M. C., "Characteristics of particle separation in suspension using an ultrasonic standing wave," J. Biosyst. Eng., 37(2), 113-121(2012). https://doi.org/10.5307/JBE.2012.37.2.113
  7. Lipkens, B., Dionne J., Trask, A., Szczur, B., Stevens A. and Rietman E., "Separation of micron-sized particles in macroscale cavities by ultrasonic standing waves," Physics Procedia, 3, 263-268(2010). https://doi.org/10.1016/j.phpro.2010.01.035
  8. Spengler, J. and Jekel, M., "Ultrasonic conditioning of suspensions- studies of streaming on particle aggregation on a lab-and pilot-plant scale," Ultrasonics, 38, 624-628(2000). https://doi.org/10.1016/S0041-624X(99)00145-6
  9. Dargie. P. G., Hill, M., Wood, R. J. K. and Jarris, N. R., "An investigation into the feasibility of flow-through ultrasonic separation," Research report in Mechanical engineering consultancy service, University of Southampton, Oct. (1997).
  10. Akan, O., Open-Channel Hydraulics Elsevier, Amsterdam, the Netherlands(2006).
  11. Chanson, H., The Hydraulics of Open Channel Flow, Arnold, London, UD(1999).
  12. Velimir, M. R., "Principles of Acoustic Devices," John Wiley & Sons, Inc., New York(1983).
  13. Harris, N., Boltryk, R., Glynne-Hones, P. and Hill, M., "A novel binary particle fractionation technique," Physics Procedia, 3, 277-281(2010). https://doi.org/10.1016/j.phpro.2010.01.037
  14. Ahn, J., Kang, S., Ahn, K., Kim, I. T., Kim, S. G., Ahn, H. and Lee, Y., "Characteristics of particle separation in water using lab-scale acoustic standing wave," J. Kor. Soc. Environ., 34(12), 787-791(2012). https://doi.org/10.4491/KSEE.2012.34.12.787
  15. Koo, Y. H., "Separation of cells and fine particles in suspension using an ultrasonic solid-liquid separator," Master thesis, Kangwon National University, Korea(2000).
  16. Lee, Y. S. and Kwon, J. H., "A smart device for particle separation in water using ultrasonic standing waves," Water Sci. Technol., 6(1), 173-183(2006).