DOI QR코드

DOI QR Code

Corrosion characteristics and interfacial contact resistances of TiN and CrN coatings deposited by PVD on 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plates

  • Lee, Jae-Bong (School of Advanced Materials Engineering, Kookmin University) ;
  • Oh, In Hwan (School of Advanced Materials Engineering, Kookmin University)
  • Received : 2013.08.09
  • Accepted : 2013.08.26
  • Published : 2013.08.31

Abstract

In a polymer membrane fuel cell stack, the bipolar plate is a key element because it accounts for over 50% of total costs of the stack. In order to lower the cost of bipolar plates, 316L stainless steels coated with nitrides such as TiN and CrN by physical vapor deposition were investigated as alternative materials for the replacement of traditional brittle graphite bipolar-plates. For this purpose, interfacial contact resistances were measured and electrochemical corrosion tests were conducted. The results showed that although both TiN and CrN coatings decreased the interfacial contact resistances to less than $10m{\Omega}{\cdot}cm^2$, they did not significantly improve the corrosion resistance in simulated polymer electrolyte membrane fuel cell environments. A CrN coating on 316L stainless steel showed better corrosion resistance than a TiN coating did, indicating the possibility of using modified CrN coated metallic bipolar plates to replace graphite bipolar plates.

Keywords

References

  1. Y. Hung, K. M. El-Khatib, H. Tawfik, J. Power Sources, 163, 509 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.013
  2. H. Tawfik, Y. Hung, D. Mahajan, J. Power Sources, 163, 755 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.088
  3. J. S. Cooper, J. Power Sources, 129, 152 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.037
  4. A. Hermann, T. Chaudhuri, P. Spagnol, Int. J. Hydrogen Energy, 30, 1297 (2005). https://doi.org/10.1016/j.ijhydene.2005.04.016
  5. R. A. Antunes, M. C. L. Oliveira, G. Ett, V. Ett, Int. J. Hydrogen Energy, 35, 3632 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.059
  6. A. Kraytsberg, M. Auinat, Y. Ein-Eli, J. Power Sources, 164, 697 (2007). https://doi.org/10.1016/j.jpowsour.2006.11.033
  7. M. Li, S. Luo, C. Zeng, J. Shen, H. Lin, C. Cao, Corros. Sci., 46, 1369 (2007).
  8. E. A. Cho, U. S. Jeon, S. A. Hong, I. H. Oh, S. G. Kang, J. Power Sources, 142, 177 (2005). https://doi.org/10.1016/j.jpowsour.2004.10.032
  9. Y. Wang, D. O. Northwood, J. Power Sources, 165, 293 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.034
  10. Y. Wang, D. O. Northwood, J. Power Sources, 191, 483 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.029
  11. B. Elsener, A. Rota, H. Bohni, Mater. Sci. Forum, 44-45, 29 (1989). https://doi.org/10.4028/www.scientific.net/MSF.44-45.29
  12. B. Matthes, E. Broszeit, J. Aromaa, H. Ronkainen, S. P. Hannula, A. Leyland, A. Matthews, Surf. Coat. Technol., 49, 489 (1991). https://doi.org/10.1016/0257-8972(91)90105-6
  13. I. H. Oh and Jae-Bong Lee, Corros. Sci. Tech., 9, 129 (2010).

Cited by

  1. Evaluation of Electrochemical Characteristics on Graphene Coated Austenitic and Martensitic Stainless Steels for Metallic Bipolar Plates in PEMFC Fabricated with Hydrazine Reduction Methods vol.15, pp.2, 2016, https://doi.org/10.14773/cst.2016.15.2.92